scispace - formally typeset
Open AccessJournal ArticleDOI

Crystal structures of the M1 and M4 muscarinic acetylcholine receptors.

Reads0
Chats0
TLDR
Comparison of crystal structures of the M1 and M4 muscarinic receptors bound to the inverse agonist, tiotropium, reveals differences in the orthosteric and allosteric binding sites that contribute to a role in drug selectivity at this important receptor family.
Abstract
Muscarinic M1–M5 acetylcholine receptors are G-protein-coupled receptors that regulate many vital functions of the central and peripheral nervous systems. In particular, the M1 and M4 receptor subtypes have emerged as attractive drug targets for treatments of neurological disorders, such as Alzheimer’s disease and schizophrenia, but the high conservation of the acetylcholine-binding pocket has spurred current research into targeting allosteric sites on these receptors. Here we report the crystal structures of the M1 and M4 muscarinic receptors bound to the inverse agonist, tiotropium. Comparison of these structures with each other, as well as with the previously reported M2 and M3 receptor structures, reveals differences in the orthosteric and allosteric binding sites that contribute to a role in drug selectivity at this important receptor family. We also report identification of a cluster of residues that form a network linking the orthosteric and allosteric sites of the M4 receptor, which provides new insight into how allosteric modulation may be transmitted between the two spatially distinct domains. X-ray crystal structures of the M1 and M4 muscarinic acetylcholine receptors, revealing differences in the orthosteric and allosteric binding sites that help to explain the subtype selectivity of drugs targeting this family of receptors. Arthur Christopoulos and colleagues present the first X-ray crystal structures of the M1 and M4 muscarinic acetylcholine receptors, G-protein-coupled receptors (GPCRs) that regulate many vital functions of the central and peripheral nervous systems. The structures reveal differences in the orthosteric and allosteric binding sites that help to explain the subtype selectivity of drugs targeting this family of receptors. The M1 and M4 receptor subtypes are potential drug targets for treatments of neurological disorders, such as Alzheimer's disease and schizophrenia.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Gene discovery and polygenic prediction from a genome-wide association study of educational attainment in 1.1 million individuals

James J. Lee, +94 more
- 23 Jul 2018 - 
TL;DR: A joint (multi-phenotype) analysis of educational attainment and three related cognitive phenotypes generates polygenic scores that explain 11–13% of the variance ineducational attainment and 7–10% ofthe variance in cognitive performance, which substantially increases the utility ofpolygenic scores as tools in research.
Journal ArticleDOI

GPCR Dynamics: Structures in Motion

TL;DR: What is currently known about the flexibility and dynamics of GPCRs, as determined through crystallography, spectroscopy, and computer simulations is reviewed.
Journal ArticleDOI

Structure of the Adenosine A1 Receptor Reveals the Basis for Subtype Selectivity

TL;DR: These findings provide a molecular basis for AR subtype selectivity with implications for understanding the mechanisms governing allosteric modulation of these receptors, allowing the design of more selective agents for the treatment of ischemia-reperfusion injury, renal pathologies, and neuropathic pain.
Journal ArticleDOI

Structures of the M1 and M2 muscarinic acetylcholine receptor/G-protein complexes.

TL;DR: Cryo–electron microscopy structures of M1R in complex with G11 and M2R incomplex with GoA are presented and compared to provide a framework for understanding the molecular determinants of G-protein coupling selectivity.
References
More filters
Journal ArticleDOI

Clustal W and Clustal X version 2.0

TL;DR: The Clustal W and ClUSTal X multiple sequence alignment programs have been completely rewritten in C++ to facilitate the further development of the alignment algorithms in the future and has allowed proper porting of the programs to the latest versions of Linux, Macintosh and Windows operating systems.
Journal ArticleDOI

Features and development of Coot.

TL;DR: Coot is a molecular-graphics program designed to assist in the building of protein and other macromolecular models and the current state of development and available features are presented.
Journal ArticleDOI

Phaser crystallographic software

TL;DR: A description is given of Phaser-2.1: software for phasing macromolecular crystal structures by molecular replacement and single-wavelength anomalous dispersion phasing.
Related Papers (5)