scispace - formally typeset
Open AccessJournal ArticleDOI

Developmental regulation and individual differences of neuronal H3K4me3 epigenomes in the prefrontal cortex

TLDR
It is demonstrated that H3K4me3 in human PFC is highly regulated in a cell type- and subject-specific manner and the importance of early childhood for developmentally regulated chromatin remodeling in prefrontal neurons is highlighted.
Abstract
Little is known about the regulation of neuronal and other cell-type specific epigenomes from the brain. Here, we map the genome-wide distribution of trimethylated histone H3K4 (H3K4me3), a mark associated with transcriptional regulation, in neuronal and nonneuronal nuclei collected from prefrontal cortex (PFC) of 11 individuals ranging in age from 0.5 to 69 years. Massively parallel sequencing identified 12,732–19,704 H3K4me3 enriched regions (peaks), the majority located proximal to (within 2 kb of) the transcription start site (TSS) of annotated genes. These included peaks shared by neurons in comparison with three control (lymphocyte) cell types, as well as peaks specific to individual subjects. We identified 6,213 genes that show highly enriched H3K4me3 in neurons versus control. At least 1,370 loci, including annotated genes and novel transcripts, were selectively tagged with H3K4me3 in neuronal but not in nonneuronal PFC chromatin. Our results reveal age-correlated neuronal epigenome reorganization, including decreased H3K4me3 at approximately 600 genes (many function in developmental processes) during the first year after birth. In comparison, the epigenome of aging (>60 years) PFC neurons showed less extensive changes, including increased H3K4me3 at 100 genes. These findings demonstrate that H3K4me3 in human PFC is highly regulated in a cell type- and subject-specific manner and highlight the importance of early childhood for developmentally regulated chromatin remodeling in prefrontal neurons.

read more

Citations
More filters
BookDOI

The molecular basis of autism

TL;DR: The authors examine the molecular basis of cholinergic changes in autistic spectrum disorders and relevance for treatment interventions, and the role of serotonin in Autism Spectrum Disorder in Human Studies and Animal Models.
Journal ArticleDOI

Major epigenetic development distinguishing neuronal and non-neuronal cells occurs postnatally in the murine hypothalamus.

TL;DR: The data indicate a key role for DNA methylation in establishing the gene expression potential of diverse hypothalamic cell types, and provide the novel insight that early postnatal life is a critical period for cell type-specific epigenetic development in the murine hypothalamus.
Journal ArticleDOI

Understanding the genetic liability to schizophrenia through the neuroepigenome.

TL;DR: This review will outline ongoing efforts towards this goal and will discuss approaches with the potential to shed light on the mechanism(s) of action of cell-type specific cis regulatory elements and their putative roles in disease, with particular emphasis on understanding the manner in which the epigenome and CREs influence the etiology of SCZ.
Journal ArticleDOI

Epigenetic mechanisms underlying lifespan and age-related effects of dietary restriction and the ketogenic diet.

TL;DR: In this paper, potential epigenetic processes that may link lifespan to age-related diseases, particularly in the context of dietary restriction (DR) and (other) ketogenic diets, focusing on brain and hypothalamic mechanisms.
Journal ArticleDOI

Inhibition of lysine-specific demethylase 1 by the acyclic diterpenoid geranylgeranoic acid and its derivatives.

TL;DR: The inhibitory effects of dihydro-derivatives of GGA on recombinant LSD1 strongly correlated with the induction of NTRK2 gene expression in SH-SY5Y cells, providing a novel prospect of preventing cancer onset by using GGA to regulate epigenetic modification.
References
More filters
Journal ArticleDOI

Gene Ontology: tool for the unification of biology

TL;DR: The goal of the Gene Ontology Consortium is to produce a dynamic, controlled vocabulary that can be applied to all eukaryotes even as knowledge of gene and protein roles in cells is accumulating and changing.
Journal ArticleDOI

Ultrafast and memory-efficient alignment of short DNA sequences to the human genome

TL;DR: Bowtie extends previous Burrows-Wheeler techniques with a novel quality-aware backtracking algorithm that permits mismatches and can be used simultaneously to achieve even greater alignment speeds.
Journal ArticleDOI

Model-based Analysis of ChIP-Seq (MACS)

TL;DR: This work presents Model-based Analysis of ChIP-Seq data, MACS, which analyzes data generated by short read sequencers such as Solexa's Genome Analyzer, and uses a dynamic Poisson distribution to effectively capture local biases in the genome, allowing for more robust predictions.
Journal ArticleDOI

DAVID: Database for Annotation, Visualization, and Integrated Discovery

TL;DR: DAMID is a web-accessible program that integrates functional genomic annotations with intuitive graphical summaries that assists in the interpretation of genome-scale datasets by facilitating the transition from data collection to biological meaning.
Journal ArticleDOI

High-resolution profiling of histone methylations in the human genome.

TL;DR: High-resolution maps for the genome-wide distribution of 20 histone lysine and arginine methylations as well as histone variant H2A.Z, RNA polymerase II, and the insulator binding protein CTCF across the human genome using the Solexa 1G sequencing technology are generated.
Related Papers (5)