scispace - formally typeset
Open AccessJournal ArticleDOI

Germanene: a novel two-dimensional germanium allotrope akin to graphene and silicene

Reads0
Chats0
TLDR
In this article, an atom-thin, ordered, two-dimensional multi-phase film was grown in situ through germanium molecular beam epitaxy using a gold surface as a substrate.
Abstract
We have grown an atom-thin, ordered, two-dimensional multi-phase film in situ through germanium molecular beam epitaxy using a gold (111) surface as a substrate. Its growth is similar to the formation of silicene layers on silver (111) templates. One of the phases, forming large domains, as observed in scanning tunneling microscopy, shows a clear, nearly flat, honeycomb structure. Thanks to thorough synchrotron radiation core-level spectroscopy measurements and advanced density functional theory calculations we can identify it as a ?3????3 R(30?) germanene layer in conjunction with a ?7????7 R(19.1?) Au(111) supercell, presenting compelling evidence of the synthesis of the germanium-based cousin of graphene on gold.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Exploring Two-Dimensional Materials toward the Next-Generation Circuits: From Monomer Design to Assembly Control

TL;DR: This review will first overview the emerging 2D materials and then offer a clear guideline of varied physical and chemical strategies for tuning their properties and assembly strategies of2D materials will also be included.
Journal ArticleDOI

Germanene: the germanium analogue of graphene.

TL;DR: A topical review of the various methods to synthesize germanene is addressed, a brief overview of the key results that have been obtained by density functional theory calculations are provided and the potential of germanenes for future applications is discussed.
Journal ArticleDOI

2D Materials for Gas Sensing Applications: A Review on Graphene Oxide, MoS2, WS2 and Phosphorene

TL;DR: A comprehensive review of 2D materials-based gas sensor is reported, mainly focused on the recent developments of graphene oxide, exfoliated MoS2 and WS2 and phosphorene, for gas detection applications.
Journal ArticleDOI

Control of electronic properties of 2D carbides (MXenes) by manipulating their transition metal layers

TL;DR: The electronic properties of these Mo-containing MXenes are compared with their Ti3C2 counterparts, and are found to be no longer metallic-like conductors; instead the resistance increases mildly with decreasing temperatures, and density functional theory calculations suggest that OH terminated Mo-Ti MXene are semiconductors with narrow band gaps.
References
More filters
Journal ArticleDOI

Two- and one-dimensional honeycomb structures of silicon and germanium.

TL;DR: In this paper, first-principles calculations of structure optimization, phonon modes, and finite temperature molecular dynamics predict that silicon and germanium can have stable, two-dimensional, low-buckled, honeycomb structures.
Journal Article

Two- and one-dimensional honeycomb structures of silicon and germanium

TL;DR: First-principles calculations of structure optimization, phonon modes, and finite temperature molecular dynamics predict that silicon and germanium can have stable, two-dimensional, low-buckled, honeycomb structures, which show remarkable electronic and magnetic properties, which are size and orientation dependent.
Journal ArticleDOI

Quantum spin Hall effect in silicene and two-dimensional germanium.

TL;DR: It is demonstrated that silicene with topologically nontrivial electronic structures can realize the quantum spin Hall effect (QSHE) by exploiting adiabatic continuity and the direct calculation of the Z(2) topological invariant.
Journal ArticleDOI

Experimental Evidence for Epitaxial Silicene on Diboride Thin Films

TL;DR: It is shown that two-dimensional, epitaxial silicene forms through surface segregation on zirconium diboride thin films grown on Si wafers and that the buckling and thus the electronic properties of silicenes are modified by epitaxials strain.
Journal ArticleDOI

Low-energy effective Hamiltonian involving spin-orbit coupling in silicene and two-dimensional germanium and tin

TL;DR: In this article, the authors derived the low energy effective Hamiltonian involving spin-orbit coupling (SOC) for silicene, which is the analog to the graphene quantum spin Hall effect (QSHE) Hamiltonian.
Related Papers (5)