scispace - formally typeset
Journal ArticleDOI

Graphene Quantum Dots-Capped Magnetic Mesoporous Silica Nanoparticles as a Multifunctional Platform for Controlled Drug Delivery, Magnetic Hyperthermia, and Photothermal Therapy.

TLDR
The results indicate that compared with chemotherapy, magnetichyperthermia or photothermal therapy alone, the combined chemo-magnetic hyperthermia therapy or chemo -photothermal therapy with the DOX-loaded MMSN/GQDs nanosystem exhibits a significant synergistic effect, resulting in a higher efficacy to kill cancer cells.
Abstract
A multifunctional platform is reported for synergistic therapy with controlled drug release, magnetic hyperthermia, and photothermal therapy, which is composed of graphene quantum dots (GQDs) as caps and local photothermal generators and magnetic mesoporous silica nanoparticles (MMSN) as drug carriers and magnetic thermoseeds. The structure, drug release behavior, magnetic hyperthermia capacity, photothermal effect, and synergistic therapeutic efficiency of the MMSN/GQDs nanoparticles are investigated. The results show that monodisperse MMSN/GQDs nanoparticles with the particle size of 100 nm can load doxorubicin (DOX) and trigger DOX release by low pH environment. Furthermore, the MMSN/GQDs nanoparticles can efficiently generate heat to the hyperthermia temperature under an alternating magnetic field or by near infrared irradiation. More importantly, breast cancer 4T1 cells as a model cellular system, the results indicate that compared with chemotherapy, magnetic hyperthermia or photothermal therapy alone, the combined chemo-magnetic hyperthermia therapy or chemo-photothermal therapy with the DOX-loaded MMSN/GQDs nanosystem exhibits a significant synergistic effect, resulting in a higher efficacy to kill cancer cells. Therefore, the MMSN/GQDs multifunctional platform has great potential in cancer therapy for enhancing the therapeutic efficiency.

read more

Citations
More filters
Journal ArticleDOI

Multifunctional Fe3O4@SiO2-CDs magnetic fluorescent nanoparticles as effective carrier of gambogic acid for inhibiting VX2 tumor cells

TL;DR: In this paper, a dual-functional platform that can be used for synergistic therapy, including drug release and magnetic targeting, is reported, which is realized through an amide reaction between high-fluorescence carbon quantum dots (CD) prepared by microwave method and amino-functional Fe3O4@SiO2-CDs with high saturation magnetic strength and a core-shell structure.
Journal ArticleDOI

Functionalization of AuMSS nanorods towards more effective cancer therapies

TL;DR: In this review, an overview of the modifications performed to improve the AuMSS nanorods application in nanomedicine is provided, highlighting the practical approaches that enhanced the auMSS Nanorods targeting, responsiveness to different stimuli, and blood circulation time.
Journal ArticleDOI

Crown ether triad modified core–shell magnetic mesoporous silica nanocarrier for pH-responsive drug delivery and magnetic hyperthermia applications

TL;DR: In this article, a crown ether triad (CET) unit modified core-shell magnetic mesoporous silica nanocarrier system for pH-responsive drug delivery and magnetic hyperthermia applications was fabricated.
Journal ArticleDOI

Magnetic Regulation of Thermo-Chemotherapy from a Cucurbit[7]uril-Crosslinked Hybrid Hydrogel.

TL;DR: Here, a facile strategy is introduced to construct noncovalent interactions between a polymer matrix and the incorporated nanoparticles, which is amendable to a wide range of biomedical and industrial applications.
References
More filters
Journal ArticleDOI

A mesoporous silica nanosphere-based carrier system with chemically removable CdS nanoparticle caps for stimuli-responsive controlled release of neurotransmitters and drug molecules.

TL;DR: An MCM-41 type mesoporous silica nanosphere-based controlled-release delivery system has been synthesized and characterized using surface-derivatized cadmium sulfide nanocrystals as chemically removable caps to encapsulate several pharmaceutical drug molecules and neurotransmitters inside the organically functionalized MSN Mesoporous framework.
Journal ArticleDOI

Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery

TL;DR: Potential opportunities for the combination of hyperthermia-based therapy and controlled drug release paradigms--towards successful application in personalized medicine are portrayed.
Journal ArticleDOI

Functionalized mesoporous silica materials for controlled drug delivery

TL;DR: This review highlights the most recent research progress on silica-based controlled drug delivery systems, including pure mesoporous silica sustained-release systems, magnetism and/or luminescence functionalized mesoporus silica systems which integrate targeting and tracking abilities of drug molecules.
Journal ArticleDOI

Unusual infrared-absorption mechanism in thermally reduced graphene oxide

TL;DR: The observation of a giant-infrared-absorption band in reduced graphene oxide is reported, arising from the coupling of electronic states to the asymmetric stretch mode of a yet-unreported structure, consisting of oxygen atoms aggregated at the edges of defects.
Journal ArticleDOI

Multifunctional Mesoporous Silica-Coated Graphene Nanosheet Used for Chemo-Photothermal Synergistic Targeted Therapy of Glioma

TL;DR: These findings provided an excellent drug delivery system for combined therapy of glioma due to the advanced chemo-photothermal synergistic targeted therapy and good drug release properties of GSPID, which could effectively avoid frequent and invasive dosing and improve patient compliance.
Related Papers (5)