scispace - formally typeset
Open AccessJournal ArticleDOI

High-yield production of graphene by liquid-phase exfoliation of graphite

TLDR
Graphene dispersions with concentrations up to approximately 0.01 mg ml(-1), produced by dispersion and exfoliation of graphite in organic solvents such as N-methyl-pyrrolidone are demonstrated.
Abstract
Fully exploiting the properties of graphene will require a method for the mass production of this remarkable material. Two main routes are possible: large-scale growth or large-scale exfoliation. Here, we demonstrate graphene dispersions with concentrations up to approximately 0.01 mg ml(-1), produced by dispersion and exfoliation of graphite in organic solvents such as N-methyl-pyrrolidone. This is possible because the energy required to exfoliate graphene is balanced by the solvent-graphene interaction for solvents whose surface energies match that of graphene. We confirm the presence of individual graphene sheets by Raman spectroscopy, transmission electron microscopy and electron diffraction. Our method results in a monolayer yield of approximately 1 wt%, which could potentially be improved to 7-12 wt% with further processing. The absence of defects or oxides is confirmed by X-ray photoelectron, infrared and Raman spectroscopies. We are able to produce semi-transparent conducting films and conducting composites. Solution processing of graphene opens up a range of potential large-area applications, from device and sensor fabrication to liquid-phase chemistry.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Colloidal Synthesis of 1T-WS2 and 2H-WS2 Nanosheets: Applications for Photocatalytic Hydrogen Evolution

TL;DR: The development of synthetic protocols for producing colloidal WS2 monolayers, presenting not only the usual semiconducting prismatic 2H-WS2 structure but also the less common distorted octahedral 1T- WS2 structure, which exhibits metallic behavior.
Journal ArticleDOI

Solvent exfoliation of transition metal dichalcogenides: dispersibility of exfoliated nanosheets varies only weakly between compounds.

TL;DR: This work shows that solution thermodynamics and specifically solubility parameter analysis can be used as a framework to understand the dispersion of two-dimensional materials.
Journal ArticleDOI

Sensitive electromechanical sensors using viscoelastic graphene-polymer nanocomposites

TL;DR: By considering both the connectivity and mobility of the nanosheets, a quantitative model is developed that completely describes the electromechanical properties of graphene, allowing the manufacture of strain sensors that can detect respiration and the footsteps of spiders.
Journal ArticleDOI

Graphene Oxide: Structural Analysis and Application as a Highly Transparent Support for Electron Microscopy

TL;DR: Electron diffraction shows that on average the underlying carbon lattice maintains the order and lattice-spacings of graphene; a structure that is clearly resolved in 80 kV aberration-corrected atomic resolution TEM images.
Journal ArticleDOI

Graphene: Promises, Facts, Opportunities, and Challenges in Nanomedicine

TL;DR: Nanomedicine Hong Ying Mao,† Sophie Laurent,‡ Wei Chen,*,†,§ Omid Akhavan, Mohammad Imani, Ali Akbar Ashkarran, and Morteza Mahmoudi.
References
More filters
Journal ArticleDOI

Electric Field Effect in Atomically Thin Carbon Films

TL;DR: Monocrystalline graphitic films are found to be a two-dimensional semimetal with a tiny overlap between valence and conductance bands and they exhibit a strong ambipolar electric field effect.
Journal ArticleDOI

The rise of graphene

TL;DR: Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed-matter physics, where quantum relativistic phenomena can now be mimicked and tested in table-top experiments.
Journal ArticleDOI

Two-dimensional gas of massless Dirac fermions in graphene

TL;DR: This study reports an experimental study of a condensed-matter system (graphene, a single atomic layer of carbon) in which electron transport is essentially governed by Dirac's (relativistic) equation and reveals a variety of unusual phenomena that are characteristic of two-dimensional Dirac fermions.
Journal ArticleDOI

Raman spectrum of graphene and graphene layers.

TL;DR: This work shows that graphene's electronic structure is captured in its Raman spectrum that clearly evolves with the number of layers, and allows unambiguous, high-throughput, nondestructive identification of graphene layers, which is critically lacking in this emerging research area.
Journal ArticleDOI

Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide

TL;DR: In this paper, a colloidal suspension of exfoliated graphene oxide sheets in water with hydrazine hydrate results in their aggregation and subsequent formation of a high surface area carbon material which consists of thin graphene-based sheets.
Related Papers (5)