scispace - formally typeset
Open AccessJournal ArticleDOI

High-yield production of graphene by liquid-phase exfoliation of graphite

TLDR
Graphene dispersions with concentrations up to approximately 0.01 mg ml(-1), produced by dispersion and exfoliation of graphite in organic solvents such as N-methyl-pyrrolidone are demonstrated.
Abstract
Fully exploiting the properties of graphene will require a method for the mass production of this remarkable material. Two main routes are possible: large-scale growth or large-scale exfoliation. Here, we demonstrate graphene dispersions with concentrations up to approximately 0.01 mg ml(-1), produced by dispersion and exfoliation of graphite in organic solvents such as N-methyl-pyrrolidone. This is possible because the energy required to exfoliate graphene is balanced by the solvent-graphene interaction for solvents whose surface energies match that of graphene. We confirm the presence of individual graphene sheets by Raman spectroscopy, transmission electron microscopy and electron diffraction. Our method results in a monolayer yield of approximately 1 wt%, which could potentially be improved to 7-12 wt% with further processing. The absence of defects or oxides is confirmed by X-ray photoelectron, infrared and Raman spectroscopies. We are able to produce semi-transparent conducting films and conducting composites. Solution processing of graphene opens up a range of potential large-area applications, from device and sensor fabrication to liquid-phase chemistry.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Biosensor Based on Ultrasmall MoS2 Nanoparticles for Electrochemical Detection of H2O2 Released by Cells at the Nanomolar Level

TL;DR: An extremely sensitive H2O2 biosensor based on MoS2 nanoparticles with a real determination limit as low as 2.5 nM and wide linear range of 5 orders of magnitude was constructed, and an efficient glucose biosensor was also fabricated.
Journal ArticleDOI

Graphene-based nanocomposites for energy storage and conversion in lithium batteries, supercapacitors and fuel cells

TL;DR: In this paper, the authors summarize the recent advances in the synthesis and applications of graphene and its derivatives in the fields of energy storage (lithium ion, lithium air, lithium-sulphur batteries and supercapacitors) and conversion (oxygen reduction reaction for fuel cells).
Journal ArticleDOI

High-resolution patterning of graphene by screen printing with a silicon stencil for highly flexible printed electronics.

TL;DR: High-resolution screen printing of pristine graphene is introduced for the rapid fabrication of conductive lines on flexible substrates and provides an efficient method to produce highly flexible graphene electrodes for printed electronics.
Journal ArticleDOI

Recent advances in the use of graphene-family nanoadsorbents for removal of toxic pollutants from wastewater

TL;DR: A synthesis of the current knowledge available on this broad and versatile family of graphene nanomaterials for removal of dyes, potentially toxic elements, phenolic compounds and other organic chemicals from aquatic systems is presented.
Journal ArticleDOI

Water-based and biocompatible 2D crystal inks for all-inkjet-printed heterostructures

TL;DR: A general approach to achieve inkjet-printable, water-based, two-dimensional crystal formulations, which also provide optimal film formation for multi-stack fabrication and in vitro dose-escalation cytotoxicity assays confirm the biocompatibility of the inks, extending their possible use to biomedical applications.
References
More filters
Journal ArticleDOI

Electric Field Effect in Atomically Thin Carbon Films

TL;DR: Monocrystalline graphitic films are found to be a two-dimensional semimetal with a tiny overlap between valence and conductance bands and they exhibit a strong ambipolar electric field effect.
Journal ArticleDOI

The rise of graphene

TL;DR: Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed-matter physics, where quantum relativistic phenomena can now be mimicked and tested in table-top experiments.
Journal ArticleDOI

Two-dimensional gas of massless Dirac fermions in graphene

TL;DR: This study reports an experimental study of a condensed-matter system (graphene, a single atomic layer of carbon) in which electron transport is essentially governed by Dirac's (relativistic) equation and reveals a variety of unusual phenomena that are characteristic of two-dimensional Dirac fermions.
Journal ArticleDOI

Raman spectrum of graphene and graphene layers.

TL;DR: This work shows that graphene's electronic structure is captured in its Raman spectrum that clearly evolves with the number of layers, and allows unambiguous, high-throughput, nondestructive identification of graphene layers, which is critically lacking in this emerging research area.
Journal ArticleDOI

Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide

TL;DR: In this paper, a colloidal suspension of exfoliated graphene oxide sheets in water with hydrazine hydrate results in their aggregation and subsequent formation of a high surface area carbon material which consists of thin graphene-based sheets.
Related Papers (5)