scispace - formally typeset
Open AccessJournal ArticleDOI

High-yield production of graphene by liquid-phase exfoliation of graphite

TLDR
Graphene dispersions with concentrations up to approximately 0.01 mg ml(-1), produced by dispersion and exfoliation of graphite in organic solvents such as N-methyl-pyrrolidone are demonstrated.
Abstract
Fully exploiting the properties of graphene will require a method for the mass production of this remarkable material. Two main routes are possible: large-scale growth or large-scale exfoliation. Here, we demonstrate graphene dispersions with concentrations up to approximately 0.01 mg ml(-1), produced by dispersion and exfoliation of graphite in organic solvents such as N-methyl-pyrrolidone. This is possible because the energy required to exfoliate graphene is balanced by the solvent-graphene interaction for solvents whose surface energies match that of graphene. We confirm the presence of individual graphene sheets by Raman spectroscopy, transmission electron microscopy and electron diffraction. Our method results in a monolayer yield of approximately 1 wt%, which could potentially be improved to 7-12 wt% with further processing. The absence of defects or oxides is confirmed by X-ray photoelectron, infrared and Raman spectroscopies. We are able to produce semi-transparent conducting films and conducting composites. Solution processing of graphene opens up a range of potential large-area applications, from device and sensor fabrication to liquid-phase chemistry.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Atomically Thin Boron Nitride: Unique Properties and Applications

TL;DR: In this paper, a characterization and identification of atomically thin boron nitride (BN) nanosheets is presented, followed by demonstrating their strong oxidation resistance at high temperatures and applications in protecting metals from oxidation and corrosion.
Journal ArticleDOI

Graphene supported heterogeneous catalysts: An overview

TL;DR: In this article, the advantages and limitations of carbon materials as catalyst support materials, addresses recent progress on synthesis routes with technological advances in the characterization of graphene, and follows the properties dependent of graphene as a superior catalyst support material.
Journal ArticleDOI

Flexible, transparent, conducting films of randomly stacked graphene from surfactant-stabilized, oxide-free graphene dispersions.

TL;DR: Graphite is exfoliated in water to give dispersions of mono- and few-layer graphene stabilized by surfactant, which can be used to form thin, disordered films of randomly stacked, oxide-free, few- layer graphenes.
Journal ArticleDOI

Large-scale mechanical peeling of boron nitride nanosheets by low-energy ball milling

TL;DR: In this article, a tailored ball milling condition was proposed to produce a high quality boron nitride (BN) nanosheets in high yield and efficiency. But the in-plane structure of the BN has not been damaged as shown by near edge X-ray absorption fine structure measurements.
Journal ArticleDOI

An Advanced Lithium-Ion Battery Based on a Graphene Anode and a Lithium Iron Phosphate Cathode

TL;DR: In this paper, an advanced lithium-ion battery based on a graphene ink anode and a lithium iron phosphate cathode is reported, which has an energy density of about 190 Wh kg−1 and a stable operation for over 80 charge-discharge cycles.
References
More filters
Journal ArticleDOI

Electric Field Effect in Atomically Thin Carbon Films

TL;DR: Monocrystalline graphitic films are found to be a two-dimensional semimetal with a tiny overlap between valence and conductance bands and they exhibit a strong ambipolar electric field effect.
Journal ArticleDOI

The rise of graphene

TL;DR: Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed-matter physics, where quantum relativistic phenomena can now be mimicked and tested in table-top experiments.
Journal ArticleDOI

Two-dimensional gas of massless Dirac fermions in graphene

TL;DR: This study reports an experimental study of a condensed-matter system (graphene, a single atomic layer of carbon) in which electron transport is essentially governed by Dirac's (relativistic) equation and reveals a variety of unusual phenomena that are characteristic of two-dimensional Dirac fermions.
Journal ArticleDOI

Raman spectrum of graphene and graphene layers.

TL;DR: This work shows that graphene's electronic structure is captured in its Raman spectrum that clearly evolves with the number of layers, and allows unambiguous, high-throughput, nondestructive identification of graphene layers, which is critically lacking in this emerging research area.
Journal ArticleDOI

Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide

TL;DR: In this paper, a colloidal suspension of exfoliated graphene oxide sheets in water with hydrazine hydrate results in their aggregation and subsequent formation of a high surface area carbon material which consists of thin graphene-based sheets.
Related Papers (5)