scispace - formally typeset
Open AccessJournal ArticleDOI

Lactate Regulates Metabolic and Pro-inflammatory Circuits in Control of T Cell Migration and Effector Functions.

TLDR
A novel role of lactate is established in control of proinflammatory T cell motility and effector functions, which provides a potential molecular mechanism for T cell entrapment and functional changes in inflammatory sites that drive chronic inflammation and offer targeted therapeutic interventions for the treatment of chronic inflammatory disorders.
Abstract
Lactate has long been considered a “waste” by-product of cell metabolism, and it accumulates at sites of inflammation. Recent findings have identified lactate as an active metabolite in cell signalling, although its effects on immune cells during inflammation are largely unexplored. Here we ask whether lactate is responsible for T cells remaining entrapped in inflammatory sites, where they perpetuate the chronic inflammatory process. We show that lactate accumulates in the synovia of rheumatoid arthritis patients. Extracellular sodium lactate and lactic acid inhibit the motility of CD4+ and CD8+ T cells, respectively. This selective control of T cell motility is mediated via subtype-specific transporters (Slc5a12 and Slc16a1) that we find selectively expressed by CD4+ and CD8+ subsets, respectively. We further show both in vitro and in vivo that the sodium lactate-mediated inhibition of CD4+ T cell motility is due to an interference with glycolysis activated upon engagement of the chemokine receptor CXCR3 with the chemokine CXCL10. In contrast, we find the lactic acid effect on CD8+ T cell motility to be independent of glycolysis control. In CD4+ T helper cells, sodium lactate also induces a switch towards the Th17 subset that produces large amounts of the proinflammatory cytokine IL-17, whereas in CD8+ T cells, lactic acid causes the loss of their cytolytic function. We further show that the expression of lactate transporters correlates with the clinical T cell score in the synovia of rheumatoid arthritis patients. Finally, pharmacological or antibody-mediated blockade of subtype-specific lactate transporters on T cells results in their release from the inflammatory site in an in vivo model of peritonitis. By establishing a novel role of lactate in control of proinflammatory T cell motility and effector functions, our findings provide a potential molecular mechanism for T cell entrapment and functional changes in inflammatory sites that drive chronic inflammation and offer targeted therapeutic interventions for the treatment of chronic inflammatory disorders.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Fundamentals of cancer metabolism

TL;DR: A conceptual framework to understand how and why metabolic reprogramming occurs in tumor cells, and the mechanisms linking altered metabolism to tumorigenesis and metastasis will progressively support the development of new strategies to treat human cancer.
Journal ArticleDOI

Metabolic Instruction of Immunity

TL;DR: This review of immunometabolism will reference the most recent literature to cover the choices that environments impose on the metabolism and function of immune cells and highlight their consequences during homeostasis and disease.
Journal ArticleDOI

Macrophages and Metabolism in the Tumor Microenvironment

TL;DR: The metabolic circuitries whereby TAMs condition the TME to support tumor growth and how such pathways can be therapeutically targeted are discussed.
Journal ArticleDOI

Lactate in the brain: from metabolic end-product to signalling molecule

TL;DR: Overall, lactate ensures adequate energy supply, modulates neuronal excitability levels and regulates adaptive functions in order to set the 'homeostatic tone' of the nervous system.
References
More filters
Journal ArticleDOI

Analysis of relative gene expression data using real-time quantitative pcr and the 2(-delta delta c(t)) method

TL;DR: The 2-Delta Delta C(T) method as mentioned in this paper was proposed to analyze the relative changes in gene expression from real-time quantitative PCR experiments, and it has been shown to be useful in the analysis of realtime, quantitative PCR data.
Journal ArticleDOI

Differentiation of Effector CD4 T Cell Populations

TL;DR: This review summarizes the discovery, functions, and relationships among Th cells; the cytokine and signaling requirements for their development; the networks of transcription factors involved in their differentiation; the epigenetic regulation of their key cytokines and transcription factors; and human diseases involving defective CD4 T cell differentiation.
Journal ArticleDOI

Cancer Cell Metabolism: Warburg and Beyond

TL;DR: The Warburg effect of aerobic glycolysis is re-examine and a framework for understanding its contribution to the altered metabolism of cancer cells is established.
Journal ArticleDOI

Functional polarization of tumour-associated macrophages by tumour-derived lactic acid

TL;DR: It is shown that lactic acid produced by tumour cells, as a by-product of aerobic or anaerobic glycolysis, has a critical function in signalling, through inducing the expression of vascular endothelial growth factor and the M2-like polarization of tumour-associated macrophages and this effect is mediated by hypoxia-inducible factor 1α (HIF1α).
Related Papers (5)