scispace - formally typeset
Journal ArticleDOI

‘Memristive’ switches enable ‘stateful’ logic operations via material implication

Reads0
Chats0
TLDR
Bipolar voltage-actuated switches, a family of nonlinear dynamical memory devices, can execute material implication (IMP), which is a fundamental Boolean logic operation on two variables p and q such that pIMPq is equivalent to (NOTp)ORq.
Abstract
The authors of the International Technology Roadmap for Semiconductors-the industry consensus set of goals established for advancing silicon integrated circuit technology-have challenged the computing research community to find new physical state variables (other than charge or voltage), new devices, and new architectures that offer memory and logic functions beyond those available with standard transistors. Recently, ultra-dense resistive memory arrays built from various two-terminal semiconductor or insulator thin film devices have been demonstrated. Among these, bipolar voltage-actuated switches have been identified as physical realizations of 'memristors' or memristive devices, combining the electrical properties of a memory element and a resistor. Such devices were first hypothesized by Chua in 1971 (ref. 15), and are characterized by one or more state variables that define the resistance of the switch depending upon its voltage history. Here we show that this family of nonlinear dynamical memory devices can also be used for logic operations: we demonstrate that they can execute material implication (IMP), which is a fundamental Boolean logic operation on two variables p and q such that pIMPq is equivalent to (NOTp)ORq. Incorporated within an appropriate circuit, memristive switches can thus perform 'stateful' logic operations for which the same devices serve simultaneously as gates (logic) and latches (memory) that use resistance instead of voltage or charge as the physical state variable.

read more

Citations
More filters
Proceedings ArticleDOI

Design of Ternary Logic-in-Memory Based on Memristive Dual-Crossbars

TL;DR: Experimental results show that the operation steps of the proposed multi-trit ternary adder are reduced by up to 83.82%, as compared with previously published binary memristive logic designs.
Journal ArticleDOI

The bipolar resistive switching and negative differential resistance of NiO films induced by the interface states

TL;DR: In this paper, the authors investigated the bipolar resistive switching and negative differential resistance in NiO/Pt structures and found that the NiO films have the (111) preferential orientation.
Journal ArticleDOI

Reconfigurable and Efficient Implementation of 16 Boolean Logics and Full‐Adder Functions with Memristor Crossbar for Beyond von Neumann In‐Memory Computing

TL;DR: By merely relying on the fundamental structure of two memristors and a resistor, arbitrary Boolean logic can be reconfigured and calculated in two steps, while no additional voltage sources are needed beyond “±VP” and 0, and all state reversals are based on memristor set switching.
Book ChapterDOI

Applications: Nanoelectronics and Nanomagnetics

TL;DR: The state of the art in nanoelectronics, including nanomagnetics, has rapidly gone from devices at or above 100 nm in size to the realm of 30 nm and below, with a well-defined pathway to devices (including transistors for logic and memory) of about 15 nm as discussed by the authors.
Journal ArticleDOI

A flexible resistive switching device for logical operation applications in wearable systems

TL;DR: In this paper , a flexible memristor with Al/TiO x /Al/polyethylene terephthalate structure was developed to investigate the synergistic effect from the oxygen vacancy, H 2 O molecule, and NaCl.
References
More filters
Journal ArticleDOI

The missing memristor found

TL;DR: It is shown, using a simple analytical example, that memristance arises naturally in nanoscale systems in which solid-state electronic and ionic transport are coupled under an external bias voltage.
Journal ArticleDOI

Memristor-The missing circuit element

TL;DR: In this article, the memristor is introduced as the fourth basic circuit element and an electromagnetic field interpretation of this relationship in terms of a quasi-static expansion of Maxwell's equations is presented.
Journal ArticleDOI

Memristive switching mechanism for metal/oxide/metal nanodevices.

TL;DR: Experimental evidence is provided to support this general model of memristive electrical switching in oxide systems, and micro- and nanoscale TiO2 junction devices with platinum electrodes that exhibit fast bipolar nonvolatile switching are built.
Journal ArticleDOI

Memristive devices and systems

TL;DR: In this article, a broad generalization of memristors to an interesting class of nonlinear dynamical systems called memristive systems is introduced, which are unconventional in the sense that while they behave like resistive devices, they can be endowed with a rather exotic variety of dynamic characteristics.
Related Papers (5)