scispace - formally typeset
Journal ArticleDOI

‘Memristive’ switches enable ‘stateful’ logic operations via material implication

Reads0
Chats0
TLDR
Bipolar voltage-actuated switches, a family of nonlinear dynamical memory devices, can execute material implication (IMP), which is a fundamental Boolean logic operation on two variables p and q such that pIMPq is equivalent to (NOTp)ORq.
Abstract
The authors of the International Technology Roadmap for Semiconductors-the industry consensus set of goals established for advancing silicon integrated circuit technology-have challenged the computing research community to find new physical state variables (other than charge or voltage), new devices, and new architectures that offer memory and logic functions beyond those available with standard transistors. Recently, ultra-dense resistive memory arrays built from various two-terminal semiconductor or insulator thin film devices have been demonstrated. Among these, bipolar voltage-actuated switches have been identified as physical realizations of 'memristors' or memristive devices, combining the electrical properties of a memory element and a resistor. Such devices were first hypothesized by Chua in 1971 (ref. 15), and are characterized by one or more state variables that define the resistance of the switch depending upon its voltage history. Here we show that this family of nonlinear dynamical memory devices can also be used for logic operations: we demonstrate that they can execute material implication (IMP), which is a fundamental Boolean logic operation on two variables p and q such that pIMPq is equivalent to (NOTp)ORq. Incorporated within an appropriate circuit, memristive switches can thus perform 'stateful' logic operations for which the same devices serve simultaneously as gates (logic) and latches (memory) that use resistance instead of voltage or charge as the physical state variable.

read more

Citations
More filters
Journal ArticleDOI

Memristor-Based Material Implication (IMPLY) Logic: Design Principles and Methodologies

TL;DR: The IMPLY logic gate, a memristor-based logic circuit, is described and a methodology for designing this logic family is proposed, based on a general design flow suitable for all deterministic memristive logic families.
Journal ArticleDOI

Programmable nanowire circuits for nanoprocessors

TL;DR: An architecture to integrate the programmable nanowire FETs and define a logic tile consisting of two interconnected arrays with 496 functional configurable FET nodes in an area of ∼960 μm2, representing a significant advance in the complexity and functionality of nanoelectronic circuits built from the bottom up with a tiled architecture that could be cascaded to realize fully integrated nanoprocessors with computing, memory and addressing capabilities.
Journal ArticleDOI

Electrochemical dynamics of nanoscale metallic inclusions in dielectrics

TL;DR: It is demonstrated that nanoscale inclusions in dielectrics dynamically change their shape, size and position upon applied electric field, revealing the microscopic origin behind resistive switching, and providing general guidance for the design of novel devices involving electronics and ionics.
Journal ArticleDOI

Nanobatteries in redox-based resistive switches require extension of memristor theory

TL;DR: It is shown on both a theoretical and an experimental level that nanoionic-type memristive elements are inherently controlled by non-equilibrium states resulting in a nanobattery.
Journal ArticleDOI

If it’s pinched it’s a memristor

TL;DR: In this paper, the first four elementary nonlinear 2-terminal circuit elements, namely, the resistor, the capacitor, the inductor, and the memristor, are given a circuit-theoretic foundation.
References
More filters
Journal ArticleDOI

The missing memristor found

TL;DR: It is shown, using a simple analytical example, that memristance arises naturally in nanoscale systems in which solid-state electronic and ionic transport are coupled under an external bias voltage.
Journal ArticleDOI

Memristor-The missing circuit element

TL;DR: In this article, the memristor is introduced as the fourth basic circuit element and an electromagnetic field interpretation of this relationship in terms of a quasi-static expansion of Maxwell's equations is presented.
Journal ArticleDOI

Memristive switching mechanism for metal/oxide/metal nanodevices.

TL;DR: Experimental evidence is provided to support this general model of memristive electrical switching in oxide systems, and micro- and nanoscale TiO2 junction devices with platinum electrodes that exhibit fast bipolar nonvolatile switching are built.
Journal ArticleDOI

Memristive devices and systems

TL;DR: In this article, a broad generalization of memristors to an interesting class of nonlinear dynamical systems called memristive systems is introduced, which are unconventional in the sense that while they behave like resistive devices, they can be endowed with a rather exotic variety of dynamic characteristics.
Related Papers (5)