scispace - formally typeset
Open AccessJournal ArticleDOI

Modulation of Mucosal Immune Response, Tolerance, and Proliferation in Mice Colonized by the Mucin-Degrader Akkermansia muciniphila

TLDR
It is proposed that A. muciniphila modulates pathways involved in establishing homeostasis for basal metabolism and immune tolerance toward commensal microbiota, and altered mucosal gene expression profiles toward increased expression of genes involved in immune responses and cell fate determination.
Abstract
Epithelial cells of the mammalian intestine are covered with a mucus layer that prevents direct contact with intestinal microbes but also constitutes a substrate for mucus-degrading bacteria. To study the effect of mucus degradation on the host response, germ-free mice were colonized with Akkermansia muciniphila. This anaerobic bacterium belonging to the Verrucomicrobia is specialized in the degradation of mucin, the glycoprotein present in mucus, and found in high numbers in the intestinal tract of human and other mammalian species. Efficient colonization of A. muciniphila was observed with highest numbers in the cecum, where most mucin is produced. In contrast, following colonization by Lactobacillus plantarum, a facultative anaerobe belonging to the Firmicutes that ferments carbohydrates, similar cell-numbers were found at all intestinal sites. Whereas A. muciniphila was located closely associated with the intestinal cells, L. plantarum was exclusively found in the lumen. The global transcriptional host response was determined in intestinal biopsies and revealed a consistent, site-specific, and unique modulation of about 750 genes in mice colonized by A. muciniphila and over 1500 genes after colonization by L. plantarum. Pathway reconstructions showed that colonization by A. muciniphila altered mucosal gene expression profiles toward increased expression of genes involved in immune responses and cell fate determination, while colonization by L. plantarum led to up-regulation of lipid metabolism. These indicate that the colonizers induce host responses that are specific per intestinal location. In conclusion, we propose that A. muciniphila modulates pathways involved in establishing homeostasis for basal metabolism and immune tolerance toward commensal microbiota.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Alterations of the human gut microbiome in multiple sclerosis

TL;DR: Microbiome alterations in MS include increases in Methanobrevibacter and Akkermansia and decreases in Butyricimonas and correlate with variations in the expression of genes involved in dendritic cell maturation, interferon signalling and NF-kB signalling pathways in circulating T cells and monocytes.
Journal ArticleDOI

The gut-liver axis in liver disease: Pathophysiological basis for therapy.

TL;DR: The identification of the elements of the gut-liver axis primarily damaged in each chronic liver disease offers possibilities to intervention.
Journal ArticleDOI

Next-generation beneficial microbes : The case of Akkermansia muciniphila

TL;DR: It is proposed that microbes and microbiomegnosy, or knowledge of the authors' gut microbiome, can become a novel source of future therapies as plants and its related knowledge have been the source for designing drugs over the last century.
Journal ArticleDOI

Akkermansia muciniphila and its role in regulating host functions.

TL;DR: The aims of this review are to summarize the existing data on the intestinal distribution of A. muciniphila, to provide insight into its ecology and its role in founding microbial networks at the mucosal interface, as well as to discuss recent research on itsrole in regulating host functions that are disturbed in various diseases.
Journal ArticleDOI

Microbes inside—from diversity to function: the case of Akkermansia

TL;DR: The integration of omics- and culture-based approaches with the complexity of the human intestinal microbiota in mind and the mucus-degrading bacteria Akkermansia spp.
References
More filters

疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A

宁北芳, +1 more
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Journal ArticleDOI

An obesity-associated gut microbiome with increased capacity for energy harvest

TL;DR: It is demonstrated through metagenomic and biochemical analyses that changes in the relative abundance of the Bacteroidetes and Firmicutes affect the metabolic potential of the mouse gut microbiota and indicates that the obese microbiome has an increased capacity to harvest energy from the diet.
Journal ArticleDOI

Diversity of the human intestinal microbial flora.

TL;DR: A majority of the bacterial sequences corresponded to uncultivated species and novel microorganisms, and significant intersubject variability and differences between stool and mucosa community composition were discovered.
Journal ArticleDOI

Obesity alters gut microbial ecology

TL;DR: Analysis of the microbiota of genetically obese ob/ob mice, lean ob/+ and wild-type siblings, and their ob/+ mothers, all fed the same polysaccharide-rich diet, indicates that obesity affects the diversity of the gut microbiota and suggests that intentional manipulation of community structure may be useful for regulating energy balance in obese individuals.
Journal ArticleDOI

The gut microbiota as an environmental factor that regulates fat storage

TL;DR: In this article, the authors found that conventionalization of adult germ-free C57BL/6 mice with a normal microbiota harvested from the distal intestine (cecum) of conventionally raised animals produces a 60% increase in body fat content and insulin resistance within 14 days despite reduced food intake.
Related Papers (5)