scispace - formally typeset
Journal ArticleDOI

Negligible Particle-Specific Antibacterial Activity of Silver Nanoparticles

Reads0
Chats0
TLDR
This work suggests that AgNP morphological properties known to affect antimicrobial activity are indirect effectors that primarily influence Ag(+) release, and antibacterial activity could be controlled by modulating Ag(+ release, possibly through manipulation of oxygen availability, particle size, shape, and/or type of coating.
Abstract
For nearly a decade, researchers have debated the mechanisms by which AgNPs exert toxicity to bacteria and other organisms. The most elusive question has been whether the AgNPs exert direct “particle-specific” effects beyond the known antimicrobial activity of released silver ions (Ag+). Here, we infer that Ag+ is the definitive molecular toxicant. We rule out direct particle-specific biological effects by showing the lack of toxicity of AgNPs when synthesized and tested under strictly anaerobic conditions that preclude Ag(0) oxidation and Ag+ release. Furthermore, we demonstrate that the toxicity of various AgNPs (PEG- or PVP- coated, of three different sizes each) accurately follows the dose–response pattern of E. coli exposed to Ag+ (added as AgNO3). Surprisingly, E. coli survival was stimulated by relatively low (sublethal) concentration of all tested AgNPs and AgNO3 (at 3–8 μg/L Ag+, or 12–31% of the minimum lethal concentration (MLC)), suggesting a hormetic response that would be counterproductive t...

read more

Citations
More filters
Journal ArticleDOI

Impact of TiO2 nanoparticles on growth, biofilm formation, and flavin secretion in Shewanella oneidensis.

TL;DR: This broad study of bacterial nanotoxicity, including use of sensitive analytical tools for functional assessments of biofilm formation, riboflavin secretion, and gene expression, has implications for total ecosystem health as the use of engineered nanoparticles grows.
Journal ArticleDOI

Quantifying the influence of polymer coatings on the serum albumin corona formation around silver and gold nanoparticles

TL;DR: The decisive role of poly(vinylpyrrolidone), coatings on the protein adsorption was quantitatively described for the first time and the influential role of the polymer coatings is discussed.
Journal ArticleDOI

Facile and rapid synthesis of water-soluble fluorescent gold nanoclusters for sensitive and selective detection of Ag+

TL;DR: In this paper, a one-pot approach employing tetrakis(hydroxymethyl)phosphonium chloride (THPC) and 11-mercaptoundecanoic acid (11-MUA) as combined reducing/capping agents, for the rapid preparation of fluorescent gold nanoclusters (AuNCs) from HAuCl4 in aqueous solution at room temperature.
Journal ArticleDOI

Antibacterial Metal Oxide Nanoparticles: Challenges in Interpreting the Literature.

TL;DR: Methods to evaluate MO-NPs antibacterial efficiency with focus on issues related to NPs in these assays are discussed, including sources of experimental variability including NP preparation, initial bacterial concentration, bacterial strains tested, culture microenvironment, and reported dose.
Journal ArticleDOI

Bioavailability of inorganic nanoparticles to planktonic bacteria and aquatic microalgae in freshwater

TL;DR: There are still considerable knowledge gaps with respect to ENM “speciation” in natural aquatic systems and it remains unclear if it is realistic to search for a specific ENM form that could be used as a measure of biological reactivity.
References
More filters
Journal ArticleDOI

The bactericidal effect of silver nanoparticles

TL;DR: The results indicate that the bactericidal properties of the nanoparticles are size dependent, since the only nanoparticles that present a direct interaction with the bacteria preferentially have a diameter of approximately 1-10 nm.
Journal ArticleDOI

Antimicrobial effects of silver nanoparticles

TL;DR: The results suggest that Ag nanoparticles can be used as effective growth inhibitors in various microorganisms, making them applicable to diverse medical devices and antimicrobial control systems.
Journal ArticleDOI

Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli.

TL;DR: This is the first comparative study on the bactericidal properties of silver nanoparticles of different shapes, and the results demonstrate thatsilver nanoparticles undergo a shape-dependent interaction with the gram-negative organism E. coli.
Journal ArticleDOI

Cytotoxicity and Genotoxicity of Silver Nanoparticles in Human Cells

TL;DR: A possible mechanism of toxicity is proposed which involves disruption of the mitochondrial respiratory chain by Ag-np leading to production of ROS and interruption of ATP synthesis, which in turn cause DNA damage.
Journal ArticleDOI

Silver Colloid Nanoparticles: Synthesis, Characterization, and Their Antibacterial Activity

TL;DR: The reduction of [Ag(NH(3))(2)](+) by maltose produced silver particles with a narrow size distribution with an average size of 25 nm, which showed high antimicrobial and bactericidal activity against Gram-positive and Gram-negative bacteria, including highly multiresistant strains such as methicillin-resistant Staphylococcus aureus.
Related Papers (5)