scispace - formally typeset
Journal ArticleDOI

Negligible Particle-Specific Antibacterial Activity of Silver Nanoparticles

Reads0
Chats0
TLDR
This work suggests that AgNP morphological properties known to affect antimicrobial activity are indirect effectors that primarily influence Ag(+) release, and antibacterial activity could be controlled by modulating Ag(+ release, possibly through manipulation of oxygen availability, particle size, shape, and/or type of coating.
Abstract
For nearly a decade, researchers have debated the mechanisms by which AgNPs exert toxicity to bacteria and other organisms. The most elusive question has been whether the AgNPs exert direct “particle-specific” effects beyond the known antimicrobial activity of released silver ions (Ag+). Here, we infer that Ag+ is the definitive molecular toxicant. We rule out direct particle-specific biological effects by showing the lack of toxicity of AgNPs when synthesized and tested under strictly anaerobic conditions that preclude Ag(0) oxidation and Ag+ release. Furthermore, we demonstrate that the toxicity of various AgNPs (PEG- or PVP- coated, of three different sizes each) accurately follows the dose–response pattern of E. coli exposed to Ag+ (added as AgNO3). Surprisingly, E. coli survival was stimulated by relatively low (sublethal) concentration of all tested AgNPs and AgNO3 (at 3–8 μg/L Ag+, or 12–31% of the minimum lethal concentration (MLC)), suggesting a hormetic response that would be counterproductive t...

read more

Citations
More filters
Journal ArticleDOI

Stability of single dispersed silver nanoparticles in natural and synthetic freshwaters: Effects of dissolved oxygen.

TL;DR: It is suggested that some AgNPs will be more stable for long periods in oxygen-deprived freshwaters, and pose more serious environmental risks than that in oxygenated freshwaters.
Journal ArticleDOI

Controlled in situ formation of polyacrylamide hydrogel on PET surface via SI-ARGET-ATRP for wound dressings

TL;DR: In this paper, a well defined polyacrylamide (PAM) hydrogel was synthesized on the surface of poly(ethylene terephthalate) (PET) film via surface-initiated activators regenerated by electron transfer atom transfer radical polymerization (SI-ARGET-ATRP).
Journal ArticleDOI

The disinfection performance and mechanisms of Ag/lysozyme nanoparticles supported with montmorillonite clay.

TL;DR: Results showed that Ag/lyz-Mt nanomaterial could be a promising bactericide for water disinfection through its greatly enhanced bactericidal capability against both Gram positive and Gram negative bacteria.
Journal ArticleDOI

Antimicrobial activity of nano-sized silver colloids stabilized by nitrogen-containing polymers: the key influence of the polymer capping

TL;DR: The antimicrobial effect of nano-sized silver colloids largely depends on the chemical nature of the polymer coating and the outstanding colloid stabilization provided by polyethyleneimine slows down Ag+ release thereby hampering its biological activity whereas the poorer stabilization and good ionic transport property of PVP and PEO-b-P2VP allows much faster ion release and cell damage.
Journal ArticleDOI

Effects of iron or manganese doping of ZnO nanoparticles on their dissolution, ROS generation and cytotoxicity

TL;DR: In this article, the behavior of particle dissolution and the ability for ROS generation of iron and manganese doped ZnO NPs were studied in detail and further correlated with their cytotoxicity.
References
More filters
Journal ArticleDOI

The bactericidal effect of silver nanoparticles

TL;DR: The results indicate that the bactericidal properties of the nanoparticles are size dependent, since the only nanoparticles that present a direct interaction with the bacteria preferentially have a diameter of approximately 1-10 nm.
Journal ArticleDOI

Antimicrobial effects of silver nanoparticles

TL;DR: The results suggest that Ag nanoparticles can be used as effective growth inhibitors in various microorganisms, making them applicable to diverse medical devices and antimicrobial control systems.
Journal ArticleDOI

Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli.

TL;DR: This is the first comparative study on the bactericidal properties of silver nanoparticles of different shapes, and the results demonstrate thatsilver nanoparticles undergo a shape-dependent interaction with the gram-negative organism E. coli.
Journal ArticleDOI

Cytotoxicity and Genotoxicity of Silver Nanoparticles in Human Cells

TL;DR: A possible mechanism of toxicity is proposed which involves disruption of the mitochondrial respiratory chain by Ag-np leading to production of ROS and interruption of ATP synthesis, which in turn cause DNA damage.
Journal ArticleDOI

Silver Colloid Nanoparticles: Synthesis, Characterization, and Their Antibacterial Activity

TL;DR: The reduction of [Ag(NH(3))(2)](+) by maltose produced silver particles with a narrow size distribution with an average size of 25 nm, which showed high antimicrobial and bactericidal activity against Gram-positive and Gram-negative bacteria, including highly multiresistant strains such as methicillin-resistant Staphylococcus aureus.
Related Papers (5)