scispace - formally typeset
Open AccessJournal Article

One Bacterial Cell, One Complete Genome

Reads0
Chats0
TLDR
In this article, the authors reported the completed genome from an uncultured single cell of Candidatus Sulcia muelleri DMIN, which is a polyploid species with genome copies ranging from approximately 200-900 per cell.
Abstract
While the bulk of the finished microbial genomes sequenced to date are derived from cultured bacterial and archaeal representatives, the vast majority of microorganisms elude current culturing attempts, severely limiting the ability to recover complete or even partial genomes from these environmental species. Single cell genomics is a novel culture-independent approach, which enables access to the genetic material of an individual cell. No single cell genome has to our knowledge been closed and finished to date. Here we report the completed genome from an uncultured single cell of Candidatus Sulcia muelleri DMIN. Digital PCR on single symbiont cells isolated from the bacteriome of the green sharpshooter Draeculacephala minerva bacteriome allowed us to assess that this bacteria is polyploid with genome copies ranging from approximately 200-900 per cell, making it a most suitable target for single cell finishing efforts. For single cell shotgun sequencing, an individual Sulcia cell was isolated and whole genome amplified by multiple displacement amplification (MDA). Sanger-based finishing methods allowed us to close the genome. To verify the correctness of our single cell genome and exclude MDA-derived artifacts, we independently shotgun sequenced and assembled the Sulcia genome from pooled bacteriomes using a metagenomic approach, yielding a nearly identical genome. Four variations we detected appear to be genuine biological differences between the two samples. Comparison of the single cell genome with bacteriome metagenomic sequence data detected two single nucleotide polymorphisms (SNPs), indicating extremely low genetic diversity within a Sulcia population. This study demonstrates the power of single cell genomics to generate a complete, high quality, non-composite reference genome within an environmental sample, which can be used for population genetic analyzes.

read more

Citations
More filters
Journal ArticleDOI

A cultivation-independent approach for the genetic and cyanotoxin characterization of colonial cyanobacteria

TL;DR: This approach for the simultaneous detection and quantification of MCs with mcy genotyping, at single colony level, offers potential for the ecotoxicological characterization of environmental populations of cyanobacteria without the need for strain isolation and culture.
Journal ArticleDOI

Lysis of a Single Cyanobacterium for Whole Genome Amplification

TL;DR: A novel lysis protocol is presented that can be used to extract genomic information from a single cyanobacterium of Synechocystis sp.
Journal ArticleDOI

Mutational Pressure Drives Differential Genome Conservation in Two Bacterial Endosymbionts of Sap-Feeding Insects.

TL;DR: The results suggest that differences in long-term rates of sequence evolution in Sulcia versus BetaSymb, and perhaps the contrasting degrees of stability of their relationships with the host, are driven by differences in mutagenesis.
Journal ArticleDOI

Culture-independent analysis of bacterial communities in hemolymph of American lobsters with epizootic shell disease.

TL;DR: It is demonstrated that hemolymph bacteremia and the particular bacterial species present do not correlate with the incidence of ESD, providing further evidence that microbiologically, ESD is a strictly cuticular disease.
Book ChapterDOI

Novel Next-Generation Sequencing Applications

TL;DR: This chapter describes select novel applications of next-generation sequencing in relation to large-scale sequencing-based projects, cell and cell compartments sequencing and disease-targeted sequencing.
References
More filters

SPAdes, a new genome assembly algorithm and its applications to single-cell sequencing ( 7th Annual SFAF Meeting, 2012)

Glenn Tesler
TL;DR: SPAdes as mentioned in this paper is a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler and on popular assemblers Velvet and SoapDeNovo (for multicell data).
Journal ArticleDOI

MEGAN analysis of metagenomic data

TL;DR: MEGAN, a new computer program that allows laptop analysis of large metagenomic data sets, is introduced and provides graphical and statistical output for comparing different data sets.
Journal ArticleDOI

Metagenomics: Application of Genomics to Uncultured Microorganisms

TL;DR: Reassembly of multiple genomes has provided insight into energy and nutrient cycling within the community, genome structure, gene function, population genetics and microheterogeneity, and lateral gene transfer among members of an uncultured community.
Related Papers (5)