scispace - formally typeset
Open AccessJournal ArticleDOI

MEGAN analysis of metagenomic data

Reads0
Chats0
TLDR
MEGAN, a new computer program that allows laptop analysis of large metagenomic data sets, is introduced and provides graphical and statistical output for comparing different data sets.
Abstract
Metagenomics is the study of the genomic content of a sample of organisms obtained from a common habitat using targeted or random sequencing. Goals include understanding the extent and role of microbial diversity. The taxonomical content of such a sample is usually estimated by comparison against sequence databases of known sequences. Most published studies use the analysis of paired-end reads, complete sequences of environmental fosmid and BAC clones, or environmental assemblies. Emerging sequencing-by-synthesis technologies with very high throughput are paving the way to low-cost random “shotgun” approaches. This paper introduces MEGAN, a new computer program that allows laptop analysis of large metagenomic data sets. In a preprocessing step, the set of DNA sequences is compared against databases of known sequences using BLAST or another comparison tool. MEGAN is then used to compute and explore the taxonomical content of the data set, employing the NCBI taxonomy to summarize and order the results. A simple lowest common ancestor algorithm assigns reads to taxa such that the taxonomical level of the assigned taxon reflects the level of conservation of the sequence. The software allows large data sets to be dissected without the need for assembly or the targeting of specific phylogenetic markers. It provides graphical and statistical output for comparing different data sets. The approach is applied to several data sets, including the Sargasso Sea data set, a recently published metagenomic data set sampled from a mammoth bone, and several complete microbial genomes. Also, simulations that evaluate the performance of the approach for different read lengths are presented.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Metagenomic biomarker discovery and explanation

TL;DR: A new method for metagenomic biomarker discovery is described and validates by way of class comparison, tests of biological consistency and effect size estimation to address the challenge of finding organisms, genes, or pathways that consistently explain the differences between two or more microbial communities.
Journal ArticleDOI

Kraken: ultrafast metagenomic sequence classification using exact alignments

TL;DR: Kraken is an ultrafast and highly accurate program for assigning taxonomic labels to metagenomic DNA sequences that achieves classification accuracy comparable to the fastest BLAST program.
Journal ArticleDOI

Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome

TL;DR: This study illustrates how combining comparative metagenomics with gnotobiotic mouse models and specific dietary manipulations can disclose the niches of previously uncharacterized members of the gut microbiota.
Journal ArticleDOI

Succession of microbial consortia in the developing infant gut microbiome

TL;DR: This study revealed that seemingly chaotic shifts in the microbiome are associated with life events; however, additional experiments ought to be conducted to assess how different infants respond to similar life events.
References
More filters
Journal ArticleDOI

Basic Local Alignment Search Tool

TL;DR: A new approach to rapid sequence comparison, basic local alignment search tool (BLAST), directly approximates alignments that optimize a measure of local similarity, the maximal segment pair (MSP) score.
Journal ArticleDOI

The Complete Genome Sequence of Escherichia coli K-12

TL;DR: The 4,639,221-base pair sequence of Escherichia coli K-12 is presented and reveals ubiquitous as well as narrowly distributed gene families; many families of similar genes within E. coli are also evident.
Related Papers (5)
Trending Questions (1)
What software uses phylogenetic analysis?

The software allows large data sets to be dissected without the need for assembly or the targeting of specific phylogenetic markers.