scispace - formally typeset
Journal ArticleDOI

Pyrolysis of Wood/Biomass for Bio-oil: A Critical Review

TLDR
A review of the recent developments in the wood pyrolysis and reports the characteristics of the resulting bio-oils, which are the main products of fast wood pyrotechnics, can be found in this paper.
Abstract
Fast pyrolysis utilizes biomass to produce a product that is used both as an energy source and a feedstock for chemical production. Considerable efforts have been made to convert wood biomass to liquid fuels and chemicals since the oil crisis in mid-1970s. This review focuses on the recent developments in the wood pyrolysis and reports the characteristics of the resulting bio-oils, which are the main products of fast wood pyrolysis. Virtually any form of biomass can be considered for fast pyrolysis. Most work has been performed on wood, because of its consistency and comparability between tests. However, nearly 100 types of biomass have been tested, ranging from agricultural wastes such as straw, olive pits, and nut shells to energy crops such as miscanthus and sorghum. Forestry wastes such as bark and thinnings and other solid wastes, including sewage sludge and leather wastes, have also been studied. In this review, the main (although not exclusive) emphasis has been given to wood. The literature on woo...

read more

Citations
More filters
Journal ArticleDOI

Biofuels: a technological perspective

TL;DR: In this paper, the authors provide a brief overview of the complex biofuel issue, providing the latest update of the production and potential of biofuels in the transport sector including types of biofuel, feedstocks and technologies and some of the possible socioeconomic, environmental and political implications of the widespread use of bio fuels in our society.
Journal ArticleDOI

Green Gasoline by Catalytic Fast Pyrolysis of Solid Biomass Derived Compounds

TL;DR: It is reported that gasoline-range aromatics can be produced from solid biomass feedstocks in a single reactor at short residence times (less than 2 min) and intermediate temperatures (400–600 8C) by a method the authors call catalytic fast pyrolysis.
Journal ArticleDOI

REVIEW: A review on biomass torrefaction process and product properties for energy applications

TL;DR: Torrefaction of biomass can be described as a mild form of pyrolysis at temperatures typically ranging between 200 and 300°C in an inert and reduced environment.
Journal ArticleDOI

Current biodiesel production technologies: A comparative review

TL;DR: A comparative review of the current technological methods so far used to produce biodiesel has been investigated in this article, where four primary approaches to make biodiesel are direct use and blending of vegetable oils, micro-emulsions, thermal cracking (pyrolysis) and transesterification.
References
More filters
Journal ArticleDOI

Dissolution of Cellose with Ionic Liquids

TL;DR: In this paper, the authors demonstrate that cellulose can be dissolved without activation or pretreatment in, and regenerated from, 1-butyl-3-methylimidazolium chloride and other hydrophilic ionic liquids.
Journal ArticleDOI

Energy production from biomass (Part 1): Overview of biomass.

TL;DR: The potential of a restored landfill site to act as a biomass source, providing fuel to supplement landfill gas-fuelled power stations, is examined, together with a comparison of the economics of power production from purpose-grown biomass versus waste-biomass.
Journal ArticleDOI

Overview of Applications of Biomass Fast Pyrolysis Oil

TL;DR: In this article, the authors reviewed scientific and technical developments in applications of bio-oil to date and concluded with some suggestions for research and strategic developments, and concluded that biooil is a renewable liquid fuel and can also be used for production of chemicals.
Journal ArticleDOI

Energy production from biomass. (Part 2): Conversion technologies

TL;DR: A brief review of the main conversion processes is presented, with specific regard to the production of a fuel suitable for spark ignition gas engines.
Journal ArticleDOI

Renewable fuels and chemicals by thermal processing of biomass

TL;DR: In this article, a review of thermal conversion processes and particularly the reactors that have been developed to provide the necessary conditions to optimise performance is presented, and the main technical and non-technical barriers to implementation are identified.
Related Papers (5)