scispace - formally typeset
Open AccessJournal ArticleDOI

Quality Heterostructures from Two-Dimensional Crystals Unstable in Air by Their Assembly in Inert Atmosphere

Reads0
Chats0
TLDR
A remedial approach based on cleavage, transfer, alignment, and encapsulation of air-sensitive crystals, all inside a controlled inert atmosphere, which offers a venue to significantly expand the range of experimentally accessible two-dimensional crystals and their heterostructures.
Abstract
Many layered materials can be cleaved down to individual atomic planes, similar to graphene, but only a small minority of them are stable under ambient conditions. The rest react and decompose in air, which has severely hindered their investigation and potential applications. Here we introduce a remedial approach based on cleavage, transfer, alignment, and encapsulation of air-sensitive crystals, all inside a controlled inert atmosphere. To illustrate the technology, we choose two archetypal two-dimensional crystals that are of intense scientific interest but are unstable in air: black phosphorus and niobium diselenide. Our field-effect devices made from their monolayers are conductive and fully stable under ambient conditions, which is in contrast to the counterparts processed in air. NbSe2 remains superconducting down to the monolayer thickness. Starting with a trilayer, phosphorene devices reach sufficiently high mobilities to exhibit Landau quantization. The approach offers a venue to significantly ex...

read more

Citations
More filters
Journal ArticleDOI

Fabrication of thin films of two-dimensional triangular antiferromagnet Ag2CrO2 and their transport properties

TL;DR: In this paper, the authors fabricated 100 nm thick films of two-dimensional triangular antiferromagnet Ag2CrO2 using the mechanical exfoliation technique, and performed the transport measurements down to 5 K.
Journal ArticleDOI

Two-dimensional cuprate nanodetector with single telecom photon sensitivity at T = 20 K

TL;DR: In this article , the authors demonstrate proof-of-concept nanodetectors based on exfoliated, two-dimensional cuprate superconductor Bi2Sr2CaCu2O8-δ that exhibit single-photon sensitivity at telecom wavelength at a record temperature of T = 20 K.
Journal ArticleDOI

The metallic nature of two-dimensional transition-metal dichalcogenides and MXenes

TL;DR: In this article, the authors provide a comprehensive overview on the key factors that dictate the structures and properties of transition-metal dichalcogenides (TMDCs) and MXenes.
Journal ArticleDOI

Monte Carlo analysis of phosphorene nanotransistors

TL;DR: In this paper, the results of device simulations for a short-channel n-MOSFET, using the Monte Carlo method coupled with the Poisson equation, including full bands and full electron-phonon matrix elements obtained from density functional theory.
Journal ArticleDOI

Charge Density Wave Vortex Lattice Observed in Graphene-Passivated 1T-TaS2 by Ambient Scanning Tunneling Microscopy.

TL;DR: In this article, the nearly commensurate charge density wave (CDW) excitations native to the transition-metal dichalcogenide crystal, 1T-TaS2, under ambient conditions are revealed by scanning tunneling microscopy (STM) and spectroscopy measurements of a graphene/TaS 2 heterostructure.
References
More filters
Journal ArticleDOI

Two-dimensional atomic crystals

TL;DR: By using micromechanical cleavage, a variety of 2D crystals including single layers of boron nitride, graphite, several dichalcogenides, and complex oxides are prepared and studied.
Journal ArticleDOI

Van der Waals heterostructures

TL;DR: With steady improvement in fabrication techniques and using graphene’s springboard, van der Waals heterostructures should develop into a large field of their own.
Journal ArticleDOI

Black phosphorus field-effect transistors

TL;DR: In this article, a few-layer black phosphorus crystals with thickness down to a few nanometres are used to construct field effect transistors for nanoelectronic devices. But the performance of these materials is limited.
Journal ArticleDOI

Boron nitride substrates for high-quality graphene electronics

TL;DR: Graphene devices on h-BN substrates have mobilities and carrier inhomogeneities that are almost an order of magnitude better than devices on SiO(2).
Journal ArticleDOI

Phosphorene: An Unexplored 2D Semiconductor with a High Hole Mobility

TL;DR: In this paper, the 2D counterpart of layered black phosphorus, which is called phosphorene, is introduced as an unexplored p-type semiconducting material and the authors find that the band gap is direct, depends on the number of layers and the in-layer strain, and significantly larger than the bulk value of 0.31-0.36 eV.
Related Papers (5)