scispace - formally typeset
Open AccessJournal ArticleDOI

Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0

TLDR
The constraint-based reconstruction and analysis toolbox as discussed by the authors is a software package running in the Matlab environment, which allows for quantitative prediction of cellular behavior using a constraintbased approach and allows predictive computations of both steady-state and dynamic optimal growth behavior, the effects of gene deletions, comprehensive robustness analyses, sampling the range of possible cellular metabolic states and the determination of network modules.
Abstract
The manner in which microorganisms utilize their metabolic processes can be predicted using constraint-based analysis of genome-scale metabolic networks. Herein, we present the constraint-based reconstruction and analysis toolbox, a software package running in the Matlab environment, which allows for quantitative prediction of cellular behavior using a constraint-based approach. Specifically, this software allows predictive computations of both steady-state and dynamic optimal growth behavior, the effects of gene deletions, comprehensive robustness analyses, sampling the range of possible cellular metabolic states and the determination of network modules. Functions enabling these calculations are included in the toolbox, allowing a user to input a genome-scale metabolic model distributed in Systems Biology Markup Language format and perform these calculations with just a few lines of code. The results are predictions of cellular behavior that have been verified as accurate in a growing body of research. After software installation, calculation time is minimal, allowing the user to focus on the interpretation of the computational results.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

ll-ACHRB: a scalable algorithm for sampling the feasible solution space of metabolic networks.

TL;DR: An efficient sampling algorithm called loopless Artificially Centered Hit-and-Run on a Box (ll-ACHRB) that shows overall better performance than current strategies to generate feasible flux samples across several models and demonstrates that a failure to eliminate unfeasible loops greatly affects sample statistics, in particular the correlation structure.
Journal ArticleDOI

Interrogation of global mutagenesis data with a genome scale model of Neisseria meningitidis to assess gene fitness in vitro and in sera

TL;DR: This study describes the application of a genome scale transposon library combined with an experimentally validated genome-scale metabolic network of N. meningitidis to identify essential genes and provide novel insight into the pathogen's metabolism both in vitro and during infection.
Journal ArticleDOI

Metabolic model reconstruction and analysis of an artificial microbial ecosystem for vitamin C production.

TL;DR: This study demonstrated that GSMMs and constraint-based methods can be used to decode the physiological features and inter-species interactions of AMEs used in industrial biotechnology, which will be of benefit for improving regulation and refinement in future industrial processes.
Journal ArticleDOI

Metabolome- and genome-scale model analyses for engineering of Aureobasidium pullulans to enhance polymalic acid and malic acid production from sugarcane molasses

TL;DR: It is shown that integrated metabolome- and genome-scale model analyses were an effective approach for engineering the metabolic node for PMA synthesis, and also developed an economical and green process forPMA and MA production from renewable biomass feedstocks.
Journal ArticleDOI

Impact of Stoichiometry Representation on Simulation of Genotype-Phenotype Relationships in Metabolic Networks

TL;DR: A new method is proposed, Minimization of Metabolites Balance (MiMBl), which decouples the artifacts of stoichiometry representation from the formulation of the desired objective functions, by casting objective functions using metabolite turnovers rather than fluxes.
References
More filters
Journal ArticleDOI

Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks

TL;DR: Several case studies of Cytoscape plug-ins are surveyed, including a search for interaction pathways correlating with changes in gene expression, a study of protein complexes involved in cellular recovery to DNA damage, inference of a combined physical/functional interaction network for Halobacterium, and an interface to detailed stochastic/kinetic gene regulatory models.
Journal ArticleDOI

KEGG: Kyoto Encyclopedia of Genes and Genomes

TL;DR: The Kyoto Encyclopedia of Genes and Genomes (KEGG) as discussed by the authors is a knowledge base for systematic analysis of gene functions in terms of the networks of genes and molecules.
Journal ArticleDOI

The KEGG resource for deciphering the genome

TL;DR: A knowledge-based approach for network prediction is developed, which is to predict, given a complete set of genes in the genome, the protein interaction networks that are responsible for various cellular processes.
Journal ArticleDOI

The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models.

TL;DR: This work summarizes the Systems Biology Markup Language (SBML) Level 1, a free, open, XML-based format for representing biochemical reaction networks, a software-independent language for describing models common to research in many areas of computational biology.
Related Papers (5)