scispace - formally typeset
Open AccessJournal ArticleDOI

Relativistic Shapiro delay measurements of an extremely massive millisecond pulsar

TLDR
In this article, the authors measured the mass of the MSP J0740+6620 to be ${\mathbf{2.14} + 2.09} + 0.10% credibility interval.
Abstract
Despite its importance to our understanding of physics at supranuclear densities, the equation of state (EoS) of matter deep within neutron stars remains poorly understood. Millisecond pulsars (MSPs) are among the most useful astrophysical objects in the Universe for testing fundamental physics, and place some of the most stringent constraints on this high-density EoS. Pulsar timing—the process of accounting for every rotation of a pulsar over long time periods—can precisely measure a wide variety of physical phenomena, including those that allow the measurement of the masses of the components of a pulsar binary system1. One of these, called relativistic Shapiro delay2, can yield precise masses for both an MSP and its companion; however, it is only easily observed in a small subset of high-precision, highly inclined (nearly edge-on) binary pulsar systems. By combining data from the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) 12.5-yr data set with recent orbital-phase-specific observations using the Green Bank Telescope, we have measured the mass of the MSP J0740+6620 to be $${\mathbf{2}}{\mathbf{.14}}_{ - {\mathbf{0}}{\mathbf{.09}}}^{ + {\mathbf{0}}{\mathbf{.10}}}$$ M⊙ (68.3% credibility interval; the 95.4% credibility interval is $${\mathbf{2}}{\mathbf{.14}}_{ - {\mathbf{0}}{\mathbf{.18}}}^{ + {\mathbf{0}}{\mathbf{.20}}}$$ M⊙). It is highly likely to be the most massive neutron star yet observed, and serves as a strong constraint on the neutron star interior EoS. Cromartie et al. have probably found the most massive neutron star discovered so far by combining NANOGrav 12.5-yr data with radio data from the Green Bank Telescope. Millisecond pulsar J0740+6620 has a mass of 2.14 M⊙, ~0.1 M⊙ more massive than the previous record holder, and very close to the upper limit on neutron star masses from Laser Interferometer Gravitational-Wave Observatory measurements.

read more

Citations
More filters
Journal ArticleDOI

The evolution of binary neutron star post-merger remnants: a review

TL;DR: In this paper, the authors review what is known observationally and theoretically about binary neutron star post-merger remnants, including fluid, magnetic field, and temperature evolution from a theoretical perspective.
Journal ArticleDOI

Curvature-slope correlation of nuclear symmetry energy and its imprints on the crust-core transition, radius, and tidal deformability of canonical neutron stars

TL;DR: In this paper, a metamodel of nuclear equations of state (EOSs) with three representative correlation functions is used to generate multiple EOSs for neutron stars, and the effects of the correlation on the crust-core transition density and pressure as well as the radius and tidal deformation of canonical neutron stars are examined.
Journal ArticleDOI

QCD color superconductivity in compact stars: Color-flavor locked quark star candidate for the gravitational-wave signal GW190814

TL;DR: In this article, a color-flavor-locked quark star with mass 2.6 was found to satisfy the observational constraints on the equation of state, and the range of the model parameters, namely the superconducting gap and the bag constant, was calculated.
Journal ArticleDOI

Modelling double neutron stars: radio and gravitational waves

TL;DR: In this paper, a detailed analysis of the double neutron star (DNS) population, accounting for radio survey selection effects, was performed, and a best-fit model that is in broad agreement with the observed Galactic DNS population was proposed.
Journal ArticleDOI

Probing the equation of state of neutron star matter with gravitational waves from binary inspirals in light of GW170817: a brief review

TL;DR: The role of the tidal deformability parameter, its definition, computation, and relation to the equation of state was discussed in this paper, where the dominant tidal GW imprints were most relevant for the event GW170817.
References
More filters
Journal ArticleDOI

A two-solar-mass neutron star measured using Shapiro delay

TL;DR: Radio timing observations of the binary millisecond pulsar J1614-2230 that show a strong Shapiro delay signature are presented and the pulsar mass is calculated to be (1.97 ± 0.04)M⊙, which rules out almost all currently proposed hyperon or boson condensate equations of state.
Journal ArticleDOI

Masses, Radii, and the Equation of State of Neutron Stars

TL;DR: In this paper, the authors summarize the current knowledge of neutron-star masses and radii and show that the distribution of neutron star masses is much wider than previously thought, with three known pulsars now firmly in the 1.9-2.0-M⊙ mass range.
Book

Handbook of Pulsar Astronomy

TL;DR: In this paper, theoretical background for pulsar observations is described. But pulsars as physical tools are not used as a physical tool for the measurement of pulsar properties.
Journal ArticleDOI

Masses, Radii, and Equation of State of Neutron Stars

TL;DR: In this paper, the authors summarize the current knowledge of neutron star masses and radii and show that the neutron star mass distribution is much wider than previously thought, with 3 known pulsars now firmly in the 1.9-2.0 Msun mass range.
Related Papers (5)

GW170817: observation of gravitational waves from a binary neutron star inspiral

B. P. Abbott, +1134 more

GW170817: Measurements of Neutron Star Radii and Equation of State.

B. P. Abbott, +1238 more