scispace - formally typeset
Open AccessJournal ArticleDOI

Remodeling of Yeast Genome Expression in Response to Environmental Changes

TLDR
The results of expression analysis with MSN2/MSN4 mutants support the model that the Msn2/Msn4 activators induce the common response to environmental change and extend the understanding of the role of activators in effecting this response.
Abstract
We used genome-wide expression analysis to explore how gene expression in Saccharomyces cerevisiae is remodeled in response to various changes in extracellular environment, including changes in temperature, oxidation, nutrients, pH, and osmolarity. The results demonstrate that more than half of the genome is involved in various responses to environmental change and identify the global set of genes induced and repressed by each condition. These data implicate a substantial number of previously uncharacterized genes in these responses and reveal a signature common to environmental responses that involves approximately 10% of yeast genes. The results of expression analysis with MSN2/MSN4 mutants support the model that the Msn2/Msn4 activators induce the common response to environmental change. These results provide a global description of the transcriptional response to environmental change and extend our understanding of the role of activators in effecting this response.

read more

Citations
More filters
Journal ArticleDOI

REACTIVE OXYGEN SPECIES: Metabolism, Oxidative Stress, and Signal Transduction

TL;DR: The mechanisms of ROS generation and removal in plants during development and under biotic and abiotic stress conditions are described and the possible functions and mechanisms for ROS sensing and signaling in plants are compared with those in animals and yeast.
Journal ArticleDOI

Functional profiling of the Saccharomyces cerevisiae genome.

Guri Giaever, +72 more
- 25 Jul 2002 - 
TL;DR: It is shown that previously known and new genes are necessary for optimal growth under six well-studied conditions: high salt, sorbitol, galactose, pH 8, minimal medium and nystatin treatment, and less than 7% of genes that exhibit a significant increase in messenger RNA expression are also required for optimal Growth in four of the tested conditions.
Journal ArticleDOI

Transcriptional Regulatory Networks in Saccharomyces cerevisiae

TL;DR: This work determines how most of the transcriptional regulators encoded in the eukaryote Saccharomyces cerevisiae associate with genes across the genome in living cells, and identifies network motifs, the simplest units of network architecture, and demonstrates that an automated process can use motifs to assemble a transcriptional regulatory network structure.
Journal ArticleDOI

Osmotic Stress Signaling and Osmoadaptation in Yeasts

TL;DR: An integrated understanding of osmoadaptation requires not only knowledge of the function of many uncharacterized genes but also further insight into the time line of events, their interdependence, their dynamics, and their spatial organization as well as the importance of subtle effects.
Journal ArticleDOI

Genome-wide map of nucleosome acetylation and methylation in yeast.

TL;DR: These maps take into account changes in nucleosome occupancy at actively transcribed genes and, in doing so, revise previous assessments of the modifications associated with gene expression, providing the foundation for further understanding the roles of chromatin in gene expression and genome maintenance.
References
More filters
Journal ArticleDOI

Cluster analysis and display of genome-wide expression patterns

TL;DR: A system of cluster analysis for genome-wide expression data from DNA microarray hybridization is described that uses standard statistical algorithms to arrange genes according to similarity in pattern of gene expression, finding in the budding yeast Saccharomyces cerevisiae that clustering gene expression data groups together efficiently genes of known similar function.
Journal ArticleDOI

Comprehensive Identification of Cell Cycle–regulated Genes of the Yeast Saccharomyces cerevisiae by Microarray Hybridization

TL;DR: A comprehensive catalog of yeast genes whose transcript levels vary periodically within the cell cycle is created, and it is found that the mRNA levels of more than half of these 800 genes respond to one or both of these cyclins.
Journal ArticleDOI

Exploring the Metabolic and Genetic Control of Gene Expression on a Genomic Scale

TL;DR: DNA microarrays containing virtually every gene of Saccharomyces cerevisiae were used to carry out a comprehensive investigation of the temporal program of gene expression accompanying the metabolic shift from fermentation to respiration, and the expression patterns of many previously uncharacterized genes provided clues to their possible functions.
Journal ArticleDOI

Functional Characterization of the S. cerevisiae Genome by Gene Deletion and Parallel Analysis

TL;DR: A total of 6925 Saccharomyces cerevisiae strains were constructed, by a high-throughput strategy, each with a precise deletion of one of 2026 ORFs (more than one-third of the ORFs in the genome), finding that 17 percent were essential for viability in rich medium.
Journal ArticleDOI

A Genome-Wide Transcriptional Analysis of the Mitotic Cell Cycle

TL;DR: The genome-wide characterization of mRNA transcript levels during the cell cycle of the budding yeast S. cerevisiae indicates a mechanism for local chromosomal organization in global mRNA regulation and links a range of human genes to cell cycle period-specific biological functions.
Related Papers (5)