scispace - formally typeset
Journal ArticleDOI

Wafer-Scale MoS2 Thin Layers Prepared by MoO3 Sulfurization

Reads0
Chats0
TLDR
Spectroscopic, optical and electrical characterizations reveal that the obtained wafer-scale MoS(2) thin layers are polycrystalline and with semiconductor properties, which make such films suitable for flexible electronics or optoelectronics.
Abstract
Atomically thin molybdenum disulfide (MoS2) layers have attracted great interest due to their direct-gap property and potential applications in optoelectronics and energy harvesting. Meanwhile, they are extremely bendable, promising for applications in flexible electronics. However, the synthetic approach to obtain large-area MoS2 atomic thin layers is still lacking. Here we report that wafer-scale MoS2 thin layers can be obtained using MoO3 thin films as a starting material followed by a two-step thermal process, reduction of MoO3 at 500 °C in hydrogen and sulfurization at 1000 °C in the presence of sulfur. Spectroscopic, optical and electrical characterizations reveal that these films are polycrystalline and with semiconductor properties. The obtained MoS2 films are uniform in thickness and easily transferable to arbitrary substrates, which make such films suitable for flexible electronics or optoelectronics.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets

TL;DR: This Review describes how the tunable electronic structure of TMDs makes them attractive for a variety of applications, as well as electrically active materials in opto-electronics.
Journal ArticleDOI

Metal dichalcogenide nanosheets: preparation, properties and applications

TL;DR: This tutorial review will take MoS(2) as a typical example to introduce the latest research development of 2D inorganic nanomaterials with emphasis on their preparation methods, properties and applications.
Journal ArticleDOI

Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers

TL;DR: The controlled vapour phase synthesis of molybdenum disulphide atomic layers is reported and a fundamental mechanism for the nucleation, growth, and grain boundary formation in its crystalline monolayers is elucidated.
Journal ArticleDOI

High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity

TL;DR: The preparation of high-mobility 4-inch wafer-scale films of monolayer molybdenum disulphide and tungsten disulPHide, grown directly on insulating SiO2 substrates, with excellent spatial homogeneity over the entire films are reported, a step towards the realization of atomically thin integrated circuitry.
Journal ArticleDOI

A library of atomically thin metal chalcogenides

TL;DR: Molten-salt-assisted chemical vapour deposition is used to synthesize a wide variety of two-dimensional transition-metal chalcogenides and elaborate how the salt decreases the melting point of the reactants and facilitates the formation of intermediate products, increasing the overall reaction rate.
References
More filters
Journal ArticleDOI

Atomically thin MoS2: a new direct-gap semiconductor

TL;DR: The electronic properties of ultrathin crystals of molybdenum disulfide consisting of N=1,2,…,6 S-Mo-S monolayers have been investigated by optical spectroscopy and the effect of quantum confinement on the material's electronic structure is traced.
Journal ArticleDOI

Single-layer MoS2 transistors

TL;DR: Because monolayer MoS(2) has a direct bandgap, it can be used to construct interband tunnel FETs, which offer lower power consumption than classical transistors, and could also complement graphene in applications that require thin transparent semiconductors, such as optoelectronics and energy harvesting.
Journal ArticleDOI

Two-dimensional atomic crystals

TL;DR: By using micromechanical cleavage, a variety of 2D crystals including single layers of boron nitride, graphite, several dichalcogenides, and complex oxides are prepared and studied.
Journal ArticleDOI

Emerging Photoluminescence in Monolayer MoS2

TL;DR: This observation shows that quantum confinement in layered d-electron materials like MoS(2), a prototypical metal dichalcogenide, provides new opportunities for engineering the electronic structure of matter at the nanoscale.
Related Papers (5)