scispace - formally typeset
Journal ArticleDOI

Weyl Semimetals as Hydrogen Evolution Catalysts

TLDR
The study shows that the combination of robust topological surface states and large room temperature carrier mobility, both of which originate from bulk Dirac bands of the Weyl semimetal, is a recipe for high activity HER catalysts.
Abstract
The search for highly efficient and low-cost catalysts is one of the main driving forces in catalytic chemistry. Current strategies for the catalyst design focus on increasing the number and activity of local catalytic sites, such as the edge sites of molybdenum disulfides in the hydrogen evolution reaction (HER). Here, the study proposes and demonstrates a different principle that goes beyond local site optimization by utilizing topological electronic states to spur catalytic activity. For HER, excellent catalysts have been found among the transition-metal monopnictides-NbP, TaP, NbAs, and TaAs-which are recently discovered to be topological Weyl semimetals. Here the study shows that the combination of robust topological surface states and large room temperature carrier mobility, both of which originate from bulk Dirac bands of the Weyl semimetal, is a recipe for high activity HER catalysts. This approach has the potential to go beyond graphene based composite photocatalysts where graphene simply provides a high mobility medium without any active catalytic sites that have been found in these topological materials. Thus, the work provides a guiding principle for the discovery of novel catalysts from the emerging field of topological materials.

read more

Citations
More filters
Journal ArticleDOI

Delivery technologies for cancer immunotherapy

TL;DR: How recent developments in drug delivery could enable new cancer immunotherapies and improve on existing ones are discussed, and the current delivery obstacles are examined.
Journal ArticleDOI

Soft Robotic Grippers.

TL;DR: A critical overview of soft robotic grippers is presented, covering different material sets, physical principles, and device architectures, and improved materials, processing methods, and sensing play an important role in future research.
Journal ArticleDOI

Electrocatalysts for Hydrogen Evolution in Alkaline Electrolytes: Mechanisms, Challenges, and Prospective Solutions

TL;DR: This review summarizes the recent developments to overcome the kinetics issues of alkaline HER, synthesis of materials with modified morphologies, and electronic structures to tune the active sites and their applications as efficient catalysts for HER.
Journal ArticleDOI

High entropy alloys: A focused review of mechanical properties and deformation mechanisms

TL;DR: In this article, the authors provide a detailed review of the deformation mechanisms of HEAs with the complex concentrated alloys (CCAs) with the FCC and BCC structures, highlighting both successes and limitations.
Journal ArticleDOI

Membrane distillation at the water-energy nexus: limits, opportunities, and challenges

TL;DR: In this article, the authors examine the key challenges facing membrane distillation and explore the opportunities for improving membrane membranes and system design, highlighting the outlook for MD desalination, highlighting challenges and key areas for future research and development.
References
More filters
Journal ArticleDOI

Colloquium: Topological insulators

TL;DR: In this paper, the theoretical foundation for topological insulators and superconductors is reviewed and recent experiments are described in which the signatures of topologically insulators have been observed.
Journal ArticleDOI

Topological insulators and superconductors

TL;DR: Topological superconductors are new states of quantum matter which cannot be adiabatically connected to conventional insulators and semiconductors and are characterized by a full insulating gap in the bulk and gapless edge or surface states which are protected by time reversal symmetry.
Journal ArticleDOI

A metal-free polymeric photocatalyst for hydrogen production from water under visible light

TL;DR: It is shown that an abundant material, polymeric carbon nitride, can produce hydrogen from water under visible-light irradiation in the presence of a sacrificial donor.
Journal ArticleDOI

Solar Water Splitting Cells

TL;DR: The biggest challenge is whether or not the goals need to be met to fully utilize solar energy for the global energy demand can be met in a costeffective way on the terawatt scale.
Journal ArticleDOI

Noble metal-free hydrogen evolution catalysts for water splitting

TL;DR: This review highlights the recent research efforts toward the synthesis of noble metal-free electrocatalysts, especially at the nanoscale, and their catalytic properties for the hydrogen evolution reaction (HER), and summarizes some important examples showing that non-Pt HER electrocatsalysts could serve as efficient cocatalysts for promoting direct solar-to-hydrogen conversion in both photochemical and photoelectrochemical water splitting systems, when combined with suitable semiconductor photocatalyst.
Related Papers (5)