scispace - formally typeset
Search or ask a question

Showing papers on "Chaperone-mediated autophagy published in 2021"


Journal ArticleDOI
TL;DR: In this article, the authors present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes.
Abstract: In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field.

1,129 citations


Journal ArticleDOI
13 Jan 2021-Nature
TL;DR: The authors showed that chaperone-mediated autophagy, a selective form of lysosomal protein degradation, is involved in sustaining haematopoietic stem cells function in adult mice.
Abstract: The activation of mostly quiescent haematopoietic stem cells (HSCs) is a prerequisite for life-long production of blood cells1. This process requires major molecular adaptations to allow HSCs to meet the regulatory and metabolic requirements for cell division2-4. The mechanisms that govern cellular reprograming upon stem-cell activation, and the subsequent return of stem cells to quiescence, have not been fully characterized. Here we show that chaperone-mediated autophagy (CMA)5, a selective form of lysosomal protein degradation, is involved in sustaining HSC function in adult mice. CMA is required for protein quality control in stem cells and for the upregulation of fatty acid metabolism upon HSC activation. We find that CMA activity in HSCs decreases with age and show that genetic or pharmacological activation of CMA can restore the functionality of old mouse and human HSCs. Together, our findings provide mechanistic insights into a role for CMA in sustaining quality control, appropriate energetics and overall long-term HSC function. Our work suggests that CMA may be a promising therapeutic target for enhancing HSC function in conditions such as ageing or stem-cell transplantation.

117 citations


Journal ArticleDOI
13 May 2021-Cell
TL;DR: In this article, the role of chaperone-mediated autophagy (CMA) in neuronal proteostasis was investigated using mouse models with systemic and neuronal-specific CMA blockage, showing that loss of neuronal CMA leads to altered neuronal function, selective changes in the neuronal metastable proteome, and proteotoxicity, all reminiscent of brain aging.

111 citations


Journal ArticleDOI
TL;DR: The authors showed that legumain deficiency attenuated acute tubular injury, inflammation, and ferroptosis in either IRI or folic acid-induced acute kidney injury (AKI) model.
Abstract: Legumain is required for maintenance of normal kidney homeostasis. However, its role in acute kidney injury (AKI) is still unclear. Here, we induced AKI by bilateral ischemia-reperfusion injury (IRI) of renal arteries or folic acid in lgmnWT and lgmnKO mice. We assessed serum creatinine, blood urea nitrogen, histological indexes of tubular injury, and expression of KIM-1 and NGAL. Inflammatory infiltration was evaluated by immunohistological staining of CD3 and F4/80, and expression of TNF-α, CCL-2, IL-33, and IL-1α. Ferroptosis was evaluated by Acsl4, Cox-2, reactive oxygen species (ROS) indexes H2DCFDA and DHE, MDA and glutathione peroxidase 4 (GPX4). We induced ferroptosis by hypoxia or erastin in primary mouse renal tubular epithelial cells (mRTECs). Cellular survival, Acsl4, Cox-2, LDH release, ROS, and MDA levels were measured. We analyzed the degradation of GPX4 through inhibition of proteasomes or autophagy. Lysosomal GPX4 was assessed to determine GPX4 degradation pathway. Immunoprecipitation (IP) was used to determine the interactions between legumain, GPX4, HSC70, and HSP90. For tentative treatment, RR-11a was administrated intraperitoneally to a mouse model of IRI-induced AKI. Our results showed that legumain deficiency attenuated acute tubular injury, inflammation, and ferroptosis in either IRI or folic acid-induced AKI model. Ferroptosis induced by hypoxia or erastin was dampened in lgmnKO mRTECs compared with lgmnWT control. Deficiency of legumain prevented chaperone-mediated autophagy of GPX4. Results of IP suggested interactions between legumain, HSC70, HSP90, and GPX4. Administration of RR-11a ameliorated ferroptosis and renal injury in the AKI model. Together, our data indicate that legumain promotes chaperone-mediated autophagy of GPX4 therefore facilitates tubular ferroptosis in AKI.

96 citations


Journal ArticleDOI
TL;DR: In this article, a large fraction of neuronal tau is degraded by chaperone-mediated autophagy (CMA) whereas, upon acetylation, tau preferentially degraded by macroautophagy and endosomal microautophagia.
Abstract: Disrupted homeostasis of the microtubule binding protein tau is a shared feature of a set of neurodegenerative disorders known as tauopathies. Acetylation of soluble tau is an early pathological event in neurodegeneration. In this work, we find that a large fraction of neuronal tau is degraded by chaperone-mediated autophagy (CMA) whereas, upon acetylation, tau is preferentially degraded by macroautophagy and endosomal microautophagy. Rerouting of acetylated tau to these other autophagic pathways originates, in part, from the inhibitory effect that acetylated tau exerts on CMA and results in its extracellular release. In fact, experimental blockage of CMA enhances cell-to-cell propagation of pathogenic tau in a mouse model of tauopathy. Furthermore, analysis of lysosomes isolated from brains of patients with tauopathies demonstrates similar molecular mechanisms leading to CMA dysfunction. This study reveals that CMA failure in tauopathy brains alters tau homeostasis and could contribute to aggravate disease progression.

72 citations


Journal ArticleDOI
TL;DR: This article showed that chaperone-mediated autophagy (CMA), one of the main lysosomal degradative process, has a r... and showed that the NLRP3 inflammasome is an important driver of atherosclerosis.
Abstract: Rationale: The NLRP3 inflammasome is an important driver of atherosclerosis. Our previous study shows that chaperone-mediated autophagy (CMA), one of the main lysosomal degradative process, has a r...

41 citations


Journal ArticleDOI
TL;DR: Autophagy refers to a ubiquitous set of catabolic pathways required to achieve proper cellular homeostasis as discussed by the authors, which has been implicated in a multitude of diseases including cancer, including cancer initiation, proliferation and metastasis.

31 citations


Journal ArticleDOI
TL;DR: In this paper, the role of mutant p53 proteins in regulating different autophagic pathways and further discuss the available evidence suggesting a possible autophagy stimulatory role of mutants.
Abstract: One of the most notoriously altered genes in human cancer is the tumor-suppressor TP53, which is mutated with high frequency in more cancers than any other tumor suppressor gene Beyond the loss of wild-type p53 functions, mutations in the TP53 gene often lead to the expression of full-length proteins with new malignant properties Among the defined oncogenic functions of mutant p53 is its effect on cell metabolism and autophagy Due to the importance of autophagy as a stress adaptive response, it is frequently dysfunctional in human cancers However, the role of p53 is enigmatic in autophagy regulation While the complex action of the wild-type p53 on autophagy has extensively been described in literature, in this review, we focus on the conceivable role of distinct mutant p53 proteins in regulating different autophagic pathways and further discuss the available evidence suggesting a possible autophagy stimulatory role of mutant p53 Moreover, we describe the involvement of different autophagic pathways in targeting and degrading mutant p53 proteins, exploring the potential strategies of targeting mutant p53 in cancer by autophagy

28 citations


Journal ArticleDOI
TL;DR: Ames et al. as mentioned in this paper showed that OPTN selectively targets HSV-1 tegument protein, VP16, and the fusion glycoprotein, gB, to degradation by autophagy.
Abstract: Fast-replicating neurotropic herpesviruses exemplified by herpes simplex virus-1 (HSV-1) naturally infect the central nervous system (CNS). However, most individuals intrinsically suppress the virus during a primary infection and preclude it from significantly damaging the CNS. Optineurin (OPTN) is a conserved autophagy receptor with little understanding of its role in neurotropic viral infections. We show that OPTN selectively targets HSV-1 tegument protein, VP16, and the fusion glycoprotein, gB, to degradation by autophagy. OPTN-deficient mice challenged with HSV-1 show significant cognitive decline and susceptibility to lethal CNS infection. OPTN deficiency unveils severe consequences for recruitment of adaptive immunity and suppression of neuronal necroptosis. Ocular HSV-1 infection is lethal without OPTN and is rescued using a necroptosis inhibitor. These results place OPTN at the crux of neuronal survival from potentially lethal CNS viral infections. During herpesvirus infection, most individuals intrinsically suppress a primary infection and therewith preclude potential damage or neurodegeneration of the CNS. Here, Ames et al. show that Optineurin (OPTN), a conserved autophagy receptor, restricts HSV-1 spread, degrades viral VP16 through autophagy and is neuroprotective against HSV infection in vivo.

21 citations


Journal ArticleDOI
TL;DR: In this article, the role of chaperone-mediated autophagy (CMA) in lipid metabolism of macrophage, the typical component of atherosclerotic plaque, remains unclear.
Abstract: Chaperone-mediated autophagy (CMA) serves as a critical upstream regulator of lipophagy and lipid metabolism in hepatocyte. However, the role of CMA in lipid metabolism of macrophage, the typical component of atherosclerotic plaque, remains unclear. In our study, LAMP-2A (L2A, a CMA marker) was reduced in macrophages exposed to high dose of oleate, and lipophagy was impaired in advanced atherosclerosis in ApoE (-/-) mice. Primary peritoneal macrophages isolated from macrophage-specific L2A-deficient mice exhibited pronounced intracellular lipid accumulation. Lipid regulatory enzymes, including long-chain-fatty-acid-CoA ligase 1 (ACSL1) and lysosomal acid lipase (LAL), were increased and reduced in L2A-KO macrophage, respectively. Other lipid-related proteins, such as SR-A, SR-B (CD36), ABCA1, or PLIN2, were not associated with increased lipid content in L2A-KO macrophage. In conclusion, deficient CMA promotes lipid accumulation in macrophage probably by regulating enzymes involved in lipid metabolism. CMA may represent a novel therapeutic target to alleviate atherosclerosis by promoting lipid metabolism. Graphical abstract.

21 citations


Journal ArticleDOI
TL;DR: Chaperone-mediated autophagy (CMA), one of the degradation pathways of proteins, is highly selective to substrates that have KFERQ-like motif as discussed by the authors, which plays an important role in regulating glucose and lipid metabolism, transcription, DNA reparation, cell cycle, cellular response to stress and consequently, regulating many agingassociated human diseases.
Abstract: Chaperone-mediated autophagy (CMA), one of the degradation pathways of proteins, is highly selective to substrates that have KFERQ-like motif. In this process, the substrate proteins are first recognized by the chaperone protein, heat shock cognate protein 70 (Hsc70), then delivered to lysosomal membrane surface where the single-span lysosomal receptor, lysosome-associated membrane protein type 2A (LAMP2A) can bind to the substrate proteins to form a 700 kDa protein complex that allows them to translocate into the lysosome lumen to be degraded by the hydrolytic enzymes. This degradation pathway mediated by CMA plays an important role in regulating glucose and lipid metabolism, transcription, DNA reparation, cell cycle, cellular response to stress and consequently, regulating many aging-associated human diseases, such as neurodegeneration, cancer and metabolic disorders. In this review, we provide an overview of current research on the functional roles of CMA primarily from a perspective of understanding and treating human diseases and also discuss its potential applications for diseases.

Journal ArticleDOI
TL;DR: Data suggest that CMA is enhanced downstream of an endocrine change resulting from whole-body ablation of GH signaling, and Snell dwarf mice have decreased protein levels of CIP2A, a well-characterized CMA target protein, without an associated change in Cip2a mRNA.
Abstract: Chaperone-mediated autophagy (CMA) is the most selective form of lysosomal proteolysis. CMA modulates proteomic organization through selective protein degradation, with targets including metabolic enzymes, cell growth regulators, and neurodegeneration-related proteins. CMA activity is low in ad libitum-fed rodents but is increased by prolonged fasting. AKT negatively regulates CMA at the lysosomal membrane by phosphorylating and inhibiting the CMA regulator GFAP. We have previously reported that long-lived Pou1f1/Pit1 mutant (Snell) mice and ghr (growth hormone receptor) knockout mice (ghr KO) have lower AKT activity when fed compared to littermate controls, suggesting the hypothesis that these mice have increased baseline CMA activity. Here, we report that liver lysosomes from fed Snell dwarf mice and ghr KO mice have decreased GFAP phosphorylation and increased CMA substrate uptake activity. Liver lysosomes isolated from fed Snell dwarf mice and ghr KO mice injected with the protease inhibitor leupeptin had increased accumulation of endogenous CMA substrates, compared to littermate controls, suggesting an increase in CMA in vivo. Mice with liver-specific ablation of GH (growth hormone) signaling did not have increased liver CMA, suggesting that a signaling effect resulting from a loss of growth hormone in another tissue causes enhanced CMA in Snell dwarf and ghr KO mice. Finally, we find Snell dwarf mice have decreased protein levels (in liver and kidney) of CIP2A, a well-characterized CMA target protein, without an associated change in Cip2a mRNA. Collectively, these data suggest that CMA is enhanced downstream of an endocrine change resulting from whole-body ablation of GH signaling.Abbreviations: CMA: chaperone-mediated autophagy; GH: growth hormone; ghr KO: growth hormone receptor knockout; LAMP2A: splice variant 1 of Lamp2 transcript; LC3-I: non-lipidated MAP1LC3; LC3-II: lipidated MAP1LC3; Li-ghr KO: liver-specific ghr knockout; MA: macroautophagy; MTORC1: mechanistic target of rapamycin kinase complex 1; MTORC2: mechanistic target of rapamycin kinase complex 2; PBS: phosphate-buffered saline.

Journal ArticleDOI
TL;DR: The degradation of Tau and its blockage that is associated with various PTMs of Tau would explain the dynamics of Tau degradation or accumulation in AD and unveiling the role of accessory proteins involved in these degradation pathways would help in understanding their loss of function and preventing Tau clearance.
Abstract: Tau is a microtubule-associated protein with an intrinsically unstructured conformation. Tau is subjected to several pathological post-translational modifications (PTMs), leading to its loss of interaction with microtubules and accumulation as neurofibrillary tangles (NFTs) in neurons. Tau aggregates impede functions of endoplasmic reticulum and mitochondria leading to the generation of oxidative stress and in turn amplifying the Tau aggregation. Tau is channelled to chaperones for folding into their native form, which otherwise causes its degradation and clearance. Cellular response triggers the activation of ubiquitin-proteasome system or autophagy to facilitate Tau degradation, based on the PTMs or mutations associated with Tau. Further, autophagy can be selective where Hsc70 interacts with Tau in monomeric, oligomeric and aggregated form and drives its clearance by chaperone-mediated autophagy pathway (CMA). Lysosome-associated membrane proteins-2A (LAMP-2A) is the key player of CMA that recognises Hsc70-Tau complex and triggers the downstream cascade. Thus, it becomes challenging for mutant Tau to be cleared by CMA as it loses its affinity for Hsc70 and LAMP-2A. In such a scenario, Tau might be degraded by macroautophagy otherwise sequestered by aggresomes. Henceforth, the degradation of Tau and its blockage that is associated with various PTMs of Tau would explain the dynamics of Tau degradation or accumulation in AD. Further, unveiling the role of accessory proteins involved in these degradation pathways would help in understanding their loss of function and preventing Tau clearance.

Journal ArticleDOI
TL;DR: This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record.

Journal ArticleDOI
TL;DR: It is demonstrated that MARCHF5, an E3 ubiquitin ligase required for mitochondria fission, is a chaperone-mediated autophagy substrate and that conditional expression of LAMP2A, the key CMA regulator, in dopaminergic neurons helped maintain mitochondria morphology and protected DA neuronal viability in a rodent PD model.
Abstract: As a highly dynamic organelle, mitochondria undergo constant fission and fusion to change their morphology and function, coping with various stress conditions. Loss of the balance between fission and fusion leads to impaired mitochondria function, which plays a critical role in the pathogenesis of Parkinson disease (PD). Yet the mechanisms behind mitochondria dynamics regulation remain to be fully illustrated. Chaperone-mediated autophagy (CMA) is a lysosome-dependent process that selectively degrades proteins to maintain cellular proteostasis. In this study, we demonstrated that MARCHF5, an E3 ubiquitin ligase required for mitochondria fission, is a CMA substrate. MARCHF5 interacted with key CMA regulators and was degraded by lysosomes. Severe oxidative stress compromised CMA activity and stabilized MARCHF5, which facilitated DNM1L translocation and led to excessive fission. Increase of CMA activity promoted MARCHF5 turnover, attenuated DNM1L translocation, and reduced mitochondria fragmentation, which alleviated mitochondrial dysfunction under oxidative stress. Furthermore, we showed that conditional expression of LAMP2A, the key CMA regulator, in dopaminergic (DA) neurons helped maintain mitochondria morphology and protected DA neuronal viability in a rodent PD model. Our work uncovers a critical role of CMA in maintaining proper mitochondria dynamics, and loss of this regulatory control may occur in PD and underlie its pathogenic process.Abbreviations: CMA: chaperone-mediated autophagy; DA: dopaminergic; DNM1L: dynamin 1 like; FCCP: carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone; HSPA8: heat shock protein family A (Hsp70) member 8; LAMP2A: lysosomal associated membrane protein 2A; MARCHF5: membrane-associated ring-CH-type finger 5; MMP: mitochondria membrane potential; OCR: oxygen consumption rate; 6-OHDA: 6-hydroxydopamine; PD: Parkinson disease; SNc: substantia nigra pars compacta; TEM: transmission electron microscopy; TH: tyrosine hydroxylase; TMRE: tetramethylrhodamine ethyl ester perchlorate; WT: wild type.

Journal ArticleDOI
TL;DR: In this article, the authors summarize the current knowledge regarding the impact of chaperone-mediated autophagy during aging in brain physiopathology, highlighting the role of CMA in neurodegenerative diseases and glioblastoma, the most common and aggressive brain tumor in adults.
Abstract: Brain aging is characterized by a time-dependent decline of tissue integrity and function, and it is a major risk for neurodegenerative diseases and brain cancer. Chaperone-mediated autophagy (CMA) is a selective form of autophagy specialized in protein degradation, which is based on the individual translocation of a cargo protein through the lysosomal membrane. Regulation of processes such as proteostasis, cellular energetics, or immune system activity has been associated with CMA, indicating its pivotal role in tissue homeostasis. Since first studies associating Parkinson's disease (PD) to CMA dysfunction, increasing evidence points out that CMA is altered in both physiological and pathological brain aging. In this review article, we summarize the current knowledge regarding the impact of CMA during aging in brain physiopathology, highlighting the role of CMA in neurodegenerative diseases and glioblastoma, the most common and aggressive brain tumor in adults.

Journal ArticleDOI
TL;DR: In this paper, a review about the evidences in which alterations CMA components Lamp2A and Hsc70 are associated or not with changes in CMA activity in different cancer types.
Abstract: Chaperone-mediated autophagy (CMA) represents a specific way of lysosomal protein degradation and contrary to macro and microautophagy is independent of vesicles formation. The role of CMA in different physiopathological processes has been studied for several years. In cancer, alterations of the CMA principal components, Hsc70 and Lamp2A protein and mRNA levels, have been described in malignant cells. However, changes in the expression levels of these CMA components are not always associated with changes in CMA activity and their biological significance must be carefully interpreted case by case. The objective of this review is to discuss whether altering the CMA activity, CMA substrates or CMA components is accurate to avoid cancer progression. In particular, this review will discuss about the evidences in which alterations CMA components Lamp2A and Hsc70 are associated or not with changes in CMA activity in different cancer types. This analysis will help to better understand the role of CMA activity in cancer and to elucidate whether CMA can be considered as target for therapeutics. Further, it will help to define whether the attention of the investigation should be focused on Lamp2A and Hsc70 because they can have an independent role in cancer progression beyond of their participation in altered CMA activity.

Journal ArticleDOI
TL;DR: In this article, a loss-of-function mutation in the TSC1 gene was linked to tau accumulative disorders, including age-associated neurodegenerative disorders demonstrating tau-laden intracellular inclusions.
Abstract: Age-associated neurodegenerative disorders demonstrating tau-laden intracellular inclusions are known as tauopathies. We previously linked a loss-of-function mutation in the TSC1 gene to tau accumu...

Journal ArticleDOI
TL;DR: In this article, the contribution of different autophagic pathways in lysosomal targeting, and the role of different auto-pathways in the degradation of cellular degradation is discussed.
Abstract: Autophagic pathways are regulated mechanisms that play important roles in lysosome-mediated cellular degradation. Yet, the contribution of different autophagic pathways in lysosomal targeting, and ...

Journal ArticleDOI
TL;DR: In this article, Nitric oxide (NO) produced by endothelial nitric oxide synthase (eNOS) protects against myocardial ischemia-reperfusion injury (I/R).
Abstract: Rationale: Nitric oxide (NO) produced by endothelial nitric oxide synthase (eNOS) protects against myocardial ischemia-reperfusion injury (I/R). However, reperfusion of myocardium results in supero...

Journal ArticleDOI
TL;DR: In this paper, the chaperone-mediated autophagy (CMA) lysosome subgroup promotes osteogenesis, while suppressing adipogenesis, by selectively removing osteogenesis-deterring factors, especially master transcriptional factors, such as adipogenic TLE3, ZNF423, and chondrogenic SOX9.

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the consequences of failure of chaperone-mediated autophagy (CMA) in neurons and compared the impact, on the neuronal proteome, of CMA loss to that of macro-autophagy loss.
Abstract: Different types of autophagy co-exist in all mammalian cells, however, the specific contribution of each of these autophagic pathways to the maintenance of cellular proteostasis and cellular function remains unknown. In this work, we have investigated the consequences of failure of chaperone-mediated autophagy (CMA) in neurons and compared the impact, on the neuronal proteome, of CMA loss to that of macroautophagy loss. We found that these autophagic pathways are non-redundant and that CMA is the main one responsible for maintenance of the metastable proteome (the one at risk of aggregation). We demonstrate that loss of CMA, as the one that occurs in aging, has a synergistic effect with the proteotoxicity associated with neurodegenerative conditions such as Alzheimer disease (AD) and, conversely, that, pharmacological enhancement of CMA is effective in improving both behavior and pathology in two different AD mouse models.

Journal ArticleDOI
TL;DR: Zhang et al. as discussed by the authors used histone deacetylase 6 (HDAC6) to control major cell response pathways to the cytotoxic ubiquitinated aggregates in some protein aggregation diseases.

Journal ArticleDOI
TL;DR: In this article, TPD52 enhances chaperone-mediated autophagy (CMA) activation by interacting with HSPA8/HSC70 and enhancing substrate degradation in prostate cancer.
Abstract: Aberrant chaperone-mediated autophagy (CMA) activation has been suggested as a tumorigenesis-promoting event in various cancers, although its roles in prostate cancer (PCa) remain elusive. Emerging evidence indicates that TPD52 isoform 1, a prostate-specific and androgen-responsive gene, contributes to the malignant progression of PCa. Here, we demonstrate that TPD52 enhances CMA activation by interacting with HSPA8/HSC70 and enhancing substrate degradation in PCa. Elevation of TPD52 is essential for CMA-induced PCa cell proliferation and stress resistance in vitro and in vivo. Furthermore, TPD52 is acetylated by KAT2B at K163, which is a process that can be antagonized by HDAC2. Inactivation of HDAC2 results in elevated TPD52 acetylation, which compromises the interaction between TPD52 and HSPA8, leading to impaired CMA function and tumor growth in vivo. Taken together, our findings reveal that acetylation-dependent regulation of TPD52 modulates CMA oncogenic function in PCa, thereby suggesting the possibility of targeting the TPD52-mediated CMA pathway to control the progression of PCa.Abbreviations: CMA: chaperone-mediated autophagy; HDAC2: histone deacetylase 2; HSPA8/HSC70: heat shock protein family A (Hsp70) member 8; KAT2B: lysine acetyltransferase 2B; LAMP2A: lysosomal associated membrane protein 2A; PCa: prostate cancer; TPD52: tumor protein D52.

Journal ArticleDOI
TL;DR: Chaperone-mediated autophagy (CMA) is a proteolytic process whereby selected intracellular proteins are degraded inside lysosomes as discussed by the authors and plays an important role in multiple cellular processes.

Journal ArticleDOI
TL;DR: In this article, the authors investigated the mechanisms underlying the response and resistance to 5-fluorouracil (5-FU) in colorectal cancer (CRC) cell lines.
Abstract: Chaperone‑mediated autophagy (CMA) is a selective type of autophagy whereby a specific subset of intracellular proteins is targeted to the lysosome for degradation. The present study investigated the mechanisms underlying the response and resistance to 5‑fluorouracil (5‑FU) in colorectal cancer (CRC) cell lines. In engineered 5‑FU‑resistant CRC cell lines, a significant elevation of lysosome‑associated membrane protein 2A (LAMP2A), which is the key molecule in the CMA pathway, was identified. High expression of LAMP2A was found to be responsible for 5‑FU resistance and to enhance PLD2 expression through the activation of NF‑κB pathway. Accordingly, loss or gain of function of LAMP2A in 5‑FU‑resistant CRC cells rendered them sensitive or resistant to 5‑FU, respectively. Taken together, the results of the present study suggested that chemoresistance in patients with CRC may be mediated by enhancing CMA. Thus, CMA is a promising predictor of chemosensitivity to 5‑FU treatment and anti‑CMA therapy may be a novel therapeutic option for patients with CRC.

Journal ArticleDOI
TL;DR: The effect of CMA impairment on motor function and the neural survival of cerebellar neurons is investigated using the micro RNA (miRNA)‐mediated knockdown of lysosome‐associated protein 2A (LAMP2A), a CMA‐related protein.
Abstract: Aims Chaperone-mediated autophagy (CMA) is a pathway involved in the autophagy lysosome protein degradation system. CMA has attracted attention as a contributing factor to neurodegenerative diseases since it participates in the degradation of disease-causing proteins. We previously showed that CMA is generally impaired in cells expressing the proteins causing spinocerebellar ataxias (SCAs). Therefore, we investigated the effect of CMA impairment on motor function and the neural survival of cerebellar neurons using the micro RNA (miRNA)-mediated knockdown of lysosome-associated protein 2A (LAMP2A), a CMA-related protein. Methods We injected adeno-associated virus serotype 9 vectors, which express green fluorescent protein (GFP) and miRNA (negative control miRNA or LAMP2A miRNA) under neuron-specific synapsin I promoter, into cerebellar parenchyma of 4-week-old ICR mice. Motor function of mice was evaluated by beam walking and footprint tests. Immunofluorescence experiments of cerebellar slices were conducted to evaluate histological changes in cerebella. Results GFP and miRNA were expressed in interneurons (satellite cells and basket cells) in molecular layers and granule cells in the cerebellar cortices, but not in cerebellar Purkinje cells. LAMP2A knockdown in cerebellar neurons triggered progressive motor impairment, prominent loss of cerebellar Purkinje cells, interneurons, granule cells at the late stage, and astrogliosis and microgliosis from the early stage. Conclusions CMA impairment in cerebellar interneurons and granule cells triggers the progressive ataxic phenotype, gliosis and the subsequent degeneration of cerebellar neurons, including Purkinje cells. Our present findings strongly suggest that CMA impairment is related to the pathogenesis of various SCAs.

Journal ArticleDOI
TL;DR: It is suggested that higher expression of LAMP2a is associated with more advanced tumor node metastasis stages and shorter survival time in patients with esophageal squamous cell carcinoma (ESCC), but the underlying mechanism has not been known yet.
Abstract: Background Chaperone-mediated autophagy (CMA) is a lysosomal degradation pathway of selective soluble proteins Lysosomal membrane associated protein 2a (LAMP2a) is the lysosomal membrane receptor of CMA and influences CMA activity Although it has been suggested that higher expression of LAMP2a is associated with more advanced tumor node metastasis (TNM) stages and shorter survival time in patients with esophageal squamous cell carcinoma (ESCC), the underlying mechanism has not been known yet Methods In this study, we modulated the activity of CMA through LAMP2a or small molecular compounds in human ESCC cells to investigate its role in ESCC Results We found that down-regulating the activity of CMA could inhibit the proliferation and colony formation of ESCC cells as well as increase their sensitivity to cisplatin Conclusions Our results promote better understanding of how CMA affects human ESCC and provide a new therapeutic target against ESCC through down-regulating LAMP2a

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the role of chaperone-mediated autophagy (CMA) in lung cancer and chronic obstructive pulmonary disease (COPD) through regulating apoptosis.
Abstract: Autophagy is a highly conserved mechanism of delivering cytoplasmic components for lysosomal degradation. Among the three major autophagic pathways, chaperone-mediated autophagy (CMA) is primarily characterized by its selective nature of protein degradation, which is mediated by heat shock cognate 71 kDa protein (HSC70: also known as HSPA8) recognition of the KFERQ peptide motif in target proteins. Lysosome-associated membrane protein type 2A (LAMP2A) is responsible for substrate binding and internalization to lysosomes, and thus, the lysosomal expression level of LAMP2A is a rate-limiting factor for CMA. Recent advances have uncovered not only physiological but also pathological role of CMA in multiple organs, including neurodegenerative disorders, kidney diseases, liver diseases, heart diseases, and cancers through the accumulation of unwanted proteins or increased degradation of target proteins with concomitant metabolic alterations resulting from CMA malfunction. With respect to pulmonary disorders, the involvement of CMA has been demonstrated in lung cancer and chronic obstructive pulmonary disease (COPD) pathogenesis through regulating apoptosis. Further understanding of CMA machinery may shed light on the molecular mechanisms of refractory disorders and lead to novel treatment modalities through CMA modulation.

Journal ArticleDOI
TL;DR: The most abundant protein components of lysosome membranes are LAMP1 and LAMP2 as discussed by the authors, which have common structures consisting of a large lumenal domain comp...
Abstract: LAMP1 (lysosomal-associated membrane protein 1) and LAMP2 are the most abundant protein components of lysosome membranes. Both LAMPs have common structures consisting of a large lumenal domain comp...