scispace - formally typeset
Search or ask a question

Showing papers on "Dielectric published in 2004"


Journal ArticleDOI
12 Aug 2004-Nature
TL;DR: It is shown that epitaxial strain from a newly developed substrate can be harnessed to increase Tc by hundreds of degrees and produce room-temperature ferro electricity in strontium titanate, a material that is not normally ferroelectric at any temperature.
Abstract: Systems with a ferroelectric to paraelectric transition in the vicinity of room temperature are useful for devices. Adjusting the ferroelectric transition temperature (T(c)) is traditionally accomplished by chemical substitution-as in Ba(x)Sr(1-x)TiO(3), the material widely investigated for microwave devices in which the dielectric constant (epsilon(r)) at GHz frequencies is tuned by applying a quasi-static electric field. Heterogeneity associated with chemical substitution in such films, however, can broaden this phase transition by hundreds of degrees, which is detrimental to tunability and microwave device performance. An alternative way to adjust T(c) in ferroelectric films is strain. Here we show that epitaxial strain from a newly developed substrate can be harnessed to increase T(c) by hundreds of degrees and produce room-temperature ferroelectricity in strontium titanate, a material that is not normally ferroelectric at any temperature. This strain-induced enhancement in T(c) is the largest ever reported. Spatially resolved images of the local polarization state reveal a uniformity that far exceeds films tailored by chemical substitution. The high epsilon(r) at room temperature in these films (nearly 7,000 at 10 GHz) and its sharp dependence on electric field are promising for device applications.

1,861 citations


Journal ArticleDOI
TL;DR: In this article, the choice of oxides, their structural and metallurgical behaviour, atomic diffusion, their deposition, interface structure and reactions, their electronic structure, bonding, band offsets, mobility degradation, flat band voltage shifts and electronic defects are discussed.
Abstract: The scaling of complementary metal oxide semiconductor (CMOS) transistors has led to the silicon dioxide layer used as a gate dielectric becoming so thin (1.4 nm) that its leakage current is too large. It is necessary to replace the SiO2 with a physically thicker layer of oxides of higher dielectric constant (κ) or 'high K' gate oxides such as hafnium oxide and hafnium silicate. Little was known about such oxides, and it was soon found that in many respects they have inferior electronic properties to SiO2 ,s uch as a tendency to crystallise and a high concentration of electronic defects. Intensive research is underway to develop these oxides into new high quality electronic materials. This review covers the choice of oxides, their structural and metallurgical behaviour, atomic diffusion, their deposition, interface structure and reactions, their electronic structure, bonding, band offsets, mobility degradation, flat band voltage shifts and electronic defects. The use of high K oxides in capacitors of dynamic random access memories is also covered.

1,500 citations


Patent
Randy Hoffman1
23 Jan 2004
TL;DR: In this article, a transistor having a gate electrode, a source electrode, drain electrode, dielectric material and a channel region disposed between the source electrode and drain electrode is defined.
Abstract: A transistor having a gate electrode, a source electrode, a drain electrode, a dielectric material and a channel region disposed between the source electrode and drain electrode. The channel region includes a portion doped with an impurity to change the fixed charge density within the portion relative to a remainder of the channel region.

1,075 citations


Journal ArticleDOI
05 Aug 2004-Nature
TL;DR: It is shown that thin films of hafnium dioxide (HfO2), an insulating oxide better known as a dielectric layer for nanoscale electronic devices, can be ferromagnetic even without doping.
Abstract: It is generally accepted that magnetic order in an insulator requires the cation to have partially filled shells of d or f electrons. Here we show that thin films of hafnium dioxide (HfO2), an insulating oxide better known as a dielectric layer for nanoscale electronic devices, can be ferromagnetic even without doping. This discovery challenges our understanding of magnetism in insulators, because neither Hf4+ nor O2- are magnetic ions and the d and f shells of the Hf4+ ion are either empty or full.

1,046 citations


Journal ArticleDOI
TL;DR: The relationships among magnetism, lattice modulation, and dielectric properties have been investigated for RMnO3 and it was found that the IC-C transition is accompanied by a ferroelectric transition, associated with a lattices modulation in the C phase.
Abstract: The relationships among magnetism, lattice modulation, and dielectric properties have been investigated for RMnO3 (R=Eu, Gd, Tb, and Dy). These compounds show a transition to an incommensurate lattice structure below their Neel temperature, and subsequently undergo an incommensurate-commensurate (IC-C) phase transition. For TbMnO3 and DyMnO3 it was found that the IC-C transition is accompanied by a ferroelectric transition, associated with a lattice modulation in the C phase. DyMnO3 shows a gigantic magnetocapacitance with a change of dielectric constant up to Deltaepsilon/epsilon approximately 500%.

827 citations


Journal ArticleDOI
21 Oct 2004-Nature
TL;DR: This work demonstrates a manufacturing process for TFTs with a 2.5-nm-thick molecular self-assembled monolayer (SAM) gate dielectric and a high-mobility organic semiconductor (pentacene), which operate with supply voltages of less than 2 V yet have gate currents that are lower than those of advanced silicon field-effect transistors with SiO2 dielectrics.
Abstract: Organic thin film transistors (TFTs) are of interest for a variety of large-area electronic applications, such as displays, sensors and electronic barcodes. One of the key problems with existing organic TFTs is their large operating voltage, which often exceeds 20 V. This is due to poor capacitive coupling through relatively thick gate dielectric layers: these dielectrics are usually either inorganic oxides or nitrides, or insulating polymers, and are often thicker than 100 nm to minimize gate leakage currents. Here we demonstrate a manufacturing process for TFTs with a 2.5-nm-thick molecular self-assembled monolayer (SAM) gate dielectric and a high-mobility organic semiconductor (pentacene). These TFTs operate with supply voltages of less than 2 V, yet have gate currents that are lower than those of advanced silicon field-effect transistors with SiO2 dielectrics. These results should therefore increase the prospects of using organic TFTs in low-power applications (such as portable devices). Moreover, molecular SAMs may even be of interest for advanced silicon transistors where the continued reduction in dielectric thickness leads to ever greater gate leakage and power dissipation.

801 citations


Journal ArticleDOI
TL;DR: It is demonstrated that, in addition to high permittivity, CaCu3Ti4O12 has remarkably strong nonlinear current–voltage characteristics without the addition of any dopants.
Abstract: The discovery of a giant dielectric constant of 10(5) in CaCu(3)Ti(4)O(12) has increased interest in this perovskite-type oxide Here we demonstrate that, in addition to high permittivity, CaCu(3)Ti(4)O(12) has remarkably strong nonlinear current-voltage characteristics without the addition of any dopants An intrinsic electrostatic barrier at the grain boundaries is responsible for the unusual nonlinear behaviour The nonlinear coefficient of CaCu(3)Ti(4)O(12) reaches a value of 900, which is even greater than that of the varistor material ZnO As a result, CaCu(3)Ti(4)O(12) may lead to efficient switching and gas-sensing devices

754 citations


Journal ArticleDOI
TL;DR: In this paper, simultaneous optical, electrical, and thrust measurements of an aerodynamic plasma actuator are presented, which reveal the temporal and macro-scale spatial structure of the plasma and the electrical characteristics of the discharge to the actuator performance as measured by the thrust produced.
Abstract: We present simultaneous optical, electrical, and thrust measurements of an aerodynamic plasma actuator. These measurements indicate that the plasma actuator is a form of the dielectric barrier discharge, whose behavior is governed primarily by the buildup of charge on the dielectric-encapsulated electrode. Our measurements reveal the temporal and macroscale spatial structure of the plasma. Correlating the morphology of the plasma and the electrical characteristics of the discharge to the actuator performance as measured by the thrust produced indicates a direct coupling between the interelectrode electric field (strongly modified by the presence of the plasma) and the charges in the plasma. Our measurements discount bulk heating or asymmetries in the structure of the discharge as mechanisms for the production of bulk motion of the surrounding neutral air, although such asymmetries clearly exist and impact the effectiveness of the actuator.

644 citations


Journal ArticleDOI
TL;DR: In this article, the optical properties of silver nanoparticles used in tandem ultrathin-film organic photovoltaic cells were investigated, and it was shown that the enhancement of an incident optical field persists into an organic dielectric for distances of up to 10nm from the center of an array of approximately 5-nm-diameter nanoparticles.
Abstract: We investigate the optical properties of silver nanoparticles used in tandem ultrathin-film organic photovoltaic cells. Experimental results indicate that the enhancement of an incident optical field persists into an organic dielectric for distances of up to 10nm from the center of an array of approximately 5-nm-diameter nanoparticles. Furthermore, this enhancement exists far from the resonant particle surface-plasmon excitation energy. We propose a model to explain this long-range enhancement and investigate the role that cluster spacing, shape, and an embedding dielectric medium with a complex dielectric constant play in determining plasmon enhancement. This effect is shown to increase the efficiency of tandem organic solar cells, and the implications for further solar cell efficiency improvements are discussed.

614 citations


Journal ArticleDOI
TL;DR: The single dielectric barrier discharge plasma, a plasma sustainable at atmospheric pressure, has shown considerable promise as a flow control device operating at modest (tens of watts) power levels as mentioned in this paper.
Abstract: The single dielectric barrier discharge plasma, a plasma sustainable at atmospheric pressure, has shown considerable promise as a flow control device operating at modest (tens of watts) power levels. Measurements are presented of the development of the plasma during the course of the discharge cycle, and the relevance of these measurements to the modeling of the actuator's electrical properties is discussed. Experimental evidence is presented strongly pointing to the electric field enhancement near the leading edge of the actuator as a dominant factor determining the effectiveness of momentum coupling into the surrounding air

606 citations


Journal ArticleDOI
TL;DR: It is found that simple scaling relationships give a good description of the binding energy, exciton size, and oscillator strength of excitons in nanotubes embedded in a dielectric.
Abstract: Light emission from carbon nanotubes is expected to be dominated by excitonic recombination. Here we calculate the properties of excitons in nanotubes embedded in a dielectric, for a wide range of tube radii and dielectric environments. We find that simple scaling relationships give a good description of the binding energy, exciton size, and oscillator strength.

Journal ArticleDOI
TL;DR: In this paper, the authors studied the charge carrier mobility in organic ultrathin film field effect transistors as a function of the coverage and showed that the second layer is crucial, as it provides efficient percolation pathways for carriers generated in both the first and second layers.
Abstract: Hole mobility in organic ultrathin film field-effect transistors is studied as a function of the coverage. For layered sexithienyl films, the charge carrier mobility rapidly increases with increasing coverage and saturates at a coverage of about two monolayers. This shows that the first two molecular layers next to the dielectric interface dominate the charge transport. A quantitative analysis of spatial correlations shows that the second layer is crucial, as it provides efficient percolation pathways for carriers generated in both the first and the second layers. The upper layers do not actively contribute either because their domains are smaller than the ones in the second layer or because the carrier density is negligible.

Journal ArticleDOI
TL;DR: In this article, the dielectric properties of liquid crystal polymer (LCP) have been investigated for millimeter-wave frequency bands at different LCP substrate thicknesses, and various transmission lines are fabricated on different thicknesses and the loss characteristics are given in decibels per centimeter.
Abstract: Liquid crystal polymer (LCP) is a material that has gained attention as a potential high-performance microwave substrate and packaging material. This investigation uses several methods to determine the electrical properties of LCP for millimeter-wave frequencies. Microstrip ring resonators and cavity resonators are measured in order to characterize the dielectric constant (/spl epsi//sub r/) and loss tangent (tan/spl delta/) of LCP above 30 GHz. The measured dielectric constant is shown to be steady near 3.16, and the loss tangent stays below 0.0049. In addition, various transmission lines are fabricated on different LCP substrate thicknesses and the loss characteristics are given in decibels per centimeter from 2 to 110 GHz. Peak transmission-line losses at 110 GHz vary between 0.88-2.55 dB/cm, depending on the line type and geometry. These results show, for the first time, that LCP has excellent dielectric properties for applications extending through millimeter-wave frequencies.

Journal ArticleDOI
TL;DR: In this paper, it was shown that large-scale protein motions, such as the exit of a ligand from the protein interior, follow the dielectric fluctuations in the bulk solvent.
Abstract: The concept that proteins exist in numerous different conformations or conformational substates, described by an energy landscape, is now accepted, but the dynamics is incompletely explored. We have previously shown that large-scale protein motions, such as the exit of a ligand from the protein interior, follow the dielectric fluctuations in the bulk solvent. Here, we demonstrate, by using mean-square displacements (msd) from Mossbauer and neutron-scattering experiments, that fluctuations in the hydration shell control fast fluctuations in the protein. We call the first type solvent-slaved or α-fluctuations and the second type hydration-shell-coupled or β-fluctuations. Solvent-slaved motions are similar to the α-fluctuations in glasses. Their temperature dependence can be approximated by a Vogel-Tammann-Fulcher relation and they are absent in a solid environment. Hydration-shell-coupled fluctuations are similar to the β-relaxation in glasses. They can be approximated by a Ferry or an Arrhenius relation, are much reduced or absent in dehydrated proteins, and occur in hydrated proteins even if embedded in a solid. They can be responsible for internal processes such as the migration of ligands within myoglobin. The existence of two functionally important fluctuations in proteins, one slaved to bulk motions and the other coupled to hydration-shell fluctuations, implies that the environment can control protein functions through different avenues and that no real protein transition occurs at ≈200 K. The large number of conformational substates is essential; proteins cannot function without this reservoir of entropy, which resides mainly in the hydration shell.

Journal ArticleDOI
TL;DR: In this article, the incorporation of 23 nm titanium dioxide nanoparticles into an epoxy matrix to form a nanocomposite structure is described, and it is shown that the use of nanometric particles results in a substantial change in the behavior of the composite, which can be traced to the mitigation of internal charge when a comparison is made with conventional TiO2 fillers.
Abstract: The incorporation of 23 nm titanium dioxide nanoparticles into an epoxy matrix to form a nanocomposite structure is described. It is shown that the use of nanometric particles results in a substantial change in the behaviour of the composite, which can be traced to the mitigation of internal charge when a comparison is made with conventional TiO2 fillers. A variety of diagnostic techniques (including dielectric spectroscopy, electroluminescence, thermally stimulated current, photoluminescence) have been used to augment pulsed electro-acoustic space charge measurement to provide a basis for understanding the underlying physics of the phenomenon. It would appear that, when the size of the inclusions becomes small enough, they act co-operatively with the host structure and cease to exhibit interfacial properties leading to Maxwell-Wagner polarization. It is postulated that the particles are surrounded by high charge concentrations in the Gouy-Chapman-Stern layer. Since nanoparticles have very high specific areas, these regions allow limited charge percolation through nano-filled dielectrics. The practical consequences of this have also been explored in terms of the electric strength exhibited. It would appear that there was a window in which real advantages accrue from the nano-formulated material. An optimum loading of about 10% (by weight) is indicated.

Journal ArticleDOI
TL;DR: An improved approach to inverse modeling of ground-penetrating radar signals using a stepped-frequency continuous-wave radar combined with an off-ground monostatic transverse electromagnetic horn antenna, which shows remarkable agreement between the measured and modeled Green's functions.
Abstract: The possibility to estimate accurately the subsurface electric properties from ground-penetrating radar (GPR) signals using inverse modeling is obstructed by the appropriateness of the forward model describing the GPR subsurface system. In this paper, we improved the recently developed approach of Lambot et al. whose success relies on a stepped-frequency continuous-wave (SFCW) radar combined with an off-ground monostatic transverse electromagnetic horn antenna. This radar configuration enables realistic and efficient forward modeling. We included in the initial model: 1) the multiple reflections occurring between the antenna and the soil surface using a positive feedback loop in the antenna block diagram and 2) the frequency dependence of the electric properties using a local linear approximation of the Debye model. The model was validated in laboratory conditions on a tank filled with a two-layered sand subject to different water contents. Results showed remarkable agreement between the measured and modeled Green's functions. Model inversion for the dielectric permittivity further demonstrated the accuracy of the method. Inversion for the electric conductivity led to less satisfactory results. However, a sensitivity analysis demonstrated the good stability properties of the inverse solution and put forward the necessity to reduce the remaining clutter by a factor 10. This may partly be achieved through a better characterization of the antenna transfer functions and by performing measurements in an environment without close extraneous scatterers.


Patent
26 Oct 2004
TL;DR: In this paper, a silicon dioxide-based dielectric layer is formed on a substrate surface by a sequential deposition/anneal technique, and the layer is then annealed, ideally at a moderate temperature, to remove water and thereby fully densify the film.
Abstract: A silicon dioxide-based dielectric layer is formed on a substrate surface by a sequential deposition/anneal technique. The deposited layer thickness is insufficient to prevent substantially complete penetration of annealing process agents into the layer and migration of water out of the layer. The dielectric layer is then annealed, ideally at a moderate temperature, to remove water and thereby fully densify the film. The deposition and anneal processes are then repeated until a desired dielectric film thickness is achieved.

Journal ArticleDOI
TL;DR: In this article, the temperature dependence of dielectric permittivity of BZT ceramics has been investigated and it is shown that the phase transition temperature TC (or Tm) is suppressed with increasing Zr content.

Book
01 Jan 2004
TL;DR: In this article, a charge carrier injection from electrical contacts is described, followed by a discussion of aging, discharge, and breakdown Phenomena of electrical aging, decomposition, and relaxation.
Abstract: Introduction. Electric Polarization and Relaxation. Optical and Electro-Optic Processes. Ferroelectrics, Piezoelectrics and Pyroelectrics. Electrets. Charge Carrier Injection from Electrical Contacts. Electrical Conduction and Photoconduction. Electrical Aging, Discharge and Breakdown Phenomena.

Journal ArticleDOI
TL;DR: In this article, the capacitance between the two comb electrodes of a periodic interdigital capacitive sensor, based on conformal mapping techniques, is analyzed for any space and finger width as well as for any number of layers with different thickness and permittivity.
Abstract: The widespread use of interdigital electrodes in such applications as microwave filters, surface acoustic wave devices, electro-optic shutters as well as on chemical and biological sensing and even on the electrical and dielectric characterization of materials requires that we improve our description of their electrical performance. In this paper, we present new analytical expressions for the capacitance between the two comb electrodes of a periodic interdigital capacitive sensor, based on conformal mapping techniques. This proposed model is general and quite independent of the particular application and can be applied for any space and finger width as well as for any number of layers with different thickness and permittivity. The capacitance for a particular sensor configuration is a function of the dielectric permittivity of the materials, the fingers length and of two geometric non-dimensional parameters: (i) the ratio between the space and finger widths; (ii) the ratio between the thickness of the sensitive layer and the spatial sensor wavelength. Comparisons with previously published models as well as with experimental data and finite element analysis were made.

Journal ArticleDOI
TL;DR: In this paper, the authors show that surface phonon scattering in the high/spl kappa/ dielectric is the primary cause of channel electron mobility degradation, and demonstrate that metal-gate electrodes, such as the ones with n+ and p+ work functions, are effective in improving channel mobilities to close to those of the conventional SiO/sub 2/poly-Si stack.
Abstract: We show experimental evidence of surface phonon scattering in the high-/spl kappa/ dielectric being the primary cause of channel electron mobility degradation. Next, we show that midgap TiN metal-gate electrode is effective in screening phonon scattering in the high-/spl kappa/ dielectric from coupling to the channel under inversion conditions, resulting in improved channel electron mobility. We then show that other metal-gate electrodes, such as the ones with n+ and p+ work functions, are also effective in improving channel mobilities to close to those of the conventional SiO/sub 2//poly-Si stack. Finally, we demonstrate this mobility degradation recovery translates directly into high drive performance on high-/spl kappa//metal-gate CMOS transistors with desirable threshold voltages.

Journal ArticleDOI
TL;DR: In this article, a high-voltage high-electron mobility transistors have been fabricated using multiple field plates over dielectric passivation layers, and the device breakdown voltage was found to increase with the addition of the field plates.
Abstract: High-voltage Al/sub 0.22/Ga/sub 0.78/N-GaN high-electron mobility transistors have been fabricated using multiple field plates over dielectric passivation layers. The device breakdown voltage was found to increase with the addition of the field plates. With two field plates, the device showed a breakdown voltage as high as 900 V. This technique is easy to apply, based on the standard planar transistor fabrication, and especially attractive for the power switching applications.

Journal ArticleDOI
TL;DR: In this article, the average crystal structure of BaTaO2N is a cubic perovskite, with a Ta−O/N distance of 2.056 A. The optical band gaps are estimated from diffuse reflectance spectra as follows:
Abstract: The syntheses, crystal structures, electrical properties, and optical absorbance spectra of six perovskite oxynitrides, AMO2N (A = Ba, Sr, Ca; M = Ta, Nb) have been investigated. The average crystal structure of BaTaO2N is a cubic perovskite, with a Ta−O/N distance of 2.056 A. SrTaO2N and CaTaO2N are distorted by octahedral tilting, showing noticeably smaller Ta−O/N distances of approximately 2.02 A. Electron diffraction studies of BaTaO2N are consistent with the simple cubic perovskite crystal structure determined using X-ray powder diffraction methods. Each of the niobium oxynitrides is isostructural with its tantalum analogue, though the Nb−O/N distances are observed to be slightly longer. The optical band gaps are estimated from diffuse reflectance spectra as follows: BaTaO2N, 1.8 eV; SrTaO2N, 2.1 eV; CaTaO2N, 2.4 eV; BaNbO2N, 1.8 eV; SrNbO2N, 1.9 eV; CaNbO2N, 2.1 eV. Impedance spectroscopy was carried out on sintered pellets of the ATaO2N and BaNbO2N to investigate the dielectric and electrical tran...

Journal ArticleDOI
TL;DR: A collection of robust complete three-dimensional dielectric photonic-bandgap structures for the visible and near-infrared regimes based on the diamond morphology together with their specific fabrication techniques are surveyed.
Abstract: Certain periodic dielectric structures can prohibit the propagation of light for all directions within a frequency range. These 'photonic crystals' allow researchers to modify the interaction between electromagnetic fields and dielectric media from radio to optical wavelengths. Their technological potential, such as the inhibition of spontaneous emission, enhancement of semiconductor lasers, and integration and miniaturization of optical components, makes the search for an easy-to-craft photonic crystal with a large bandgap a major field of study. This progress article surveys a collection of robust complete three-dimensional dielectric photonic-bandgap structures for the visible and near-infrared regimes based on the diamond morphology together with their specific fabrication techniques. The basic origin of the complete photonic bandgap for the 'champion' diamond morphology is described in terms of dielectric modulations along principal directions. Progress in three-dimensional interference lithography for fabrication of near-champion diamond-based structures is also discussed.

Journal ArticleDOI
TL;DR: In this article, the authors quantify the influence of the roughness of the dielectric on the mobility of pentacene transistors and discuss the cause of the effect of roughness on the performance of organic thin-film transistors.
Abstract: The properties of the dielectric strongly influence the performance of organic thin-film transistors. In this letter, we show experimental results that quantify the influence of the roughness of the dielectric on the mobility of pentacene transistors and discuss the cause of it. We consider the movement of charge carriers out of the “roughness valleys” or across those valleys at the dielectric–semiconductor interface as the limiting step for the roughness-dependent mobility in the transistor channel.

Patent
02 Dec 2004
TL;DR: In this paper, a method for depositing nano-porous low dielectric constant films by reacting an oxidizable silicon containing compound or mixture comprising an oxidisable silicon component and a non-silicon component having thermally liable groups with nitrous oxide, oxygen, ozone, or other source of reactive oxygen in gas-phase plasmaenhanced reaction is presented.
Abstract: The present invention provides a method for depositing nano-porous low dielectric constant films by reacting an oxidizable silicon containing compound or mixture comprising an oxidizable silicon component and an oxidizable non-silicon component having thermally liable groups with nitrous oxide, oxygen, ozone, or other source of reactive oxygen in gas-phase plasma-enhanced reaction. The deposited silicon oxide based film is annealed to form dispersed microscopic voids that remain in a nano-porous silicon oxide based film having a low-density structure. The nano-porous silicon oxide based films are useful for forming layers between metal lines with or without liner or cap layers. The nano-porous silicon oxide based films may also be used as an intermetal dielectric layer for fabricating dual damascene structures. Preferred nano-porous silicon oxide based films are produced by reaction of methylsilyl-1,4-dioxinyl ether or methylsiloxanyl furan and 2,4,6-trisilaoxane or cyclo-1,3,5,7-tetrasilylene-2,6-dioxy-4,8 dimethylene with nitrous oxide or oxygen followed by a cure/anneal that includes a gradual increase in temperature.

Journal ArticleDOI
TL;DR: The result suggests that surface effects could be dominant over the "bulk" properties of small diameter wires.
Abstract: Germanium nanowires (GeNWs) with p- and n-dopants were synthesized by chemical vapor deposition (CVD) and were used to construct complementary field-effect transistors (FETs). Electrical transport and X-ray photoelectron spectroscopy (XPS) data are correlated to glean the effects of Ge surface chemistry to the electrical characteristics of GeNWs. Large hysteresis due to water molecules strongly bound to GeO(2) on GeNWs is revealed. Different oxidation behavior and hysteresis characteristics and opposite band bending due to Fermi level pinning by interface states between Ge and surface oxides are observed for p- and n-type GeNWs. Vacuum annealing above 400 degrees C is used to remove surface oxides and eliminate hysteresis in GeNW FETs. High-kappa dielectric HfO(2) films grown on clean GeNW surfaces by atomic layer deposition (ALD) using an alkylamide precursor is effective in serving as the first layer of surface passivation. Lastly, the depletion length along the radial direction of nanowires is evaluated. The result suggests that surface effects could be dominant over the "bulk" properties of small diameter wires.

Journal ArticleDOI
TL;DR: In this article, the bulk ac conductivity shows a power-law behavior at different temperatures, which is related to polaron relaxation, and temperature dependence of the bulk dc conductivity indicates a variable-range-hopping mechanism.
Abstract: Transport and dielectric measurements have been performed in $\mathrm{Ca}{\mathrm{Cu}}_{3}{\mathrm{Ti}}_{4}{\mathrm{O}}_{12}$ ceramics. The bulk ac conductivity shows a power-law behavior at different temperatures, which is related to polaron relaxation. The temperature dependence of the bulk dc conductivity indicates a variable-range-hopping mechanism. The dielectric relaxation frequency deviates from the Arrhenius behavior. An equivalent circuit is used to explain qualitatively the experimental data of $\mathrm{Ca}{\mathrm{Cu}}_{3}{\mathrm{Ti}}_{4}{\mathrm{O}}_{12}$.

Journal ArticleDOI
TL;DR: A model to determine the influence of different cell properties, such as size, membrane capacitance and cytoplasm conductivity, on the impedance spectrum as measured in a microfabricated cytometer is proposed.
Abstract: We propose a model to determine the influence of different cell properties, such as size, membrane capacitance and cytoplasm conductivity, on the impedance spectrum as measured in a microfabricated cytometer. A dielectric sphere of equivalent complex permittivity is used as a simplified model to describe a biological cell. The measurement takes place between a pair of facing microelectrodes in a microchannel filled with a saline solution. The model incorporates various cell parameters, such as dielectric properties, size and position in the channel. A 3D finite element model is used to evaluate the magnitude of the electric field in the channel and the resultant changes in charge densities at the measurement electrode boundaries as a cell flows past. The charge density is integrated on the electrode surface to determine the displacement current and the channel impedance for the computed frequency range. The complete impedance model combines the finite element model, the electrode-electrolyte interface impedance and stray impedance, which are measured from a real device. The modeled dielectric complex spectra for various cell parameters are discussed and a measurement strategy for cell discrimination with such a system is proposed. We finally discuss the amount of noise and measurement fluctuations of the sensor.