scispace - formally typeset
Search or ask a question

Showing papers on "Doxorubicin published in 2009"


Journal ArticleDOI
TL;DR: It is shown that low doses of metformin, a standard drug for diabetes, inhibits cellular transformation and selectively kills cancer stem cells in four genetically different types of breast cancer.
Abstract: The cancer stem cell hypothesis suggests that, unlike most cancer cells within a tumor, cancer stem cells resist chemotherapeutic drugs and can regenerate the various cell types in the tumor, thereby causing relapse of the disease. Thus, drugs that selectively target cancer stem cells offer great promise for cancer treatment, particularly in combination with chemotherapy. Here, we show that low doses of metformin, a standard drug for diabetes, inhibits cellular transformation and selectively kills cancer stem cells in four genetically different types of breast cancer. The combination of metformin and a well-defined chemotherapeutic agent, doxorubicin, kills both cancer stem cells and non-stem cancer cells in culture. Furthermore, this combinatorial therapy reduces tumor mass and prevents relapse much more effectively than either drug alone in a xenograft mouse model. Mice seem to remain tumor-free for at least 2 months after combinatorial therapy with metformin and doxorubicin is ended. These results provide further evidence supporting the cancer stem cell hypothesis, and they provide a rationale and experimental basis for using the combination of metformin and chemotherapeutic drugs to improve treatment of patients with breast (and possibly other) cancers.

1,036 citations


Journal ArticleDOI
TL;DR: In this article, several approaches, including delivery using liposomes (DOXIL), have been developed to reduce the toxicity and enhance the clinical utility of this highly active antineoplastic agent.
Abstract: Doxorubicin (DOX) is a member of the anthracycline class of chemotherapeutic agents that are used for the treatment of many common human cancers, including aggressive non-Hodgkin’s lymphoma.[1,2] However, DOX is highly toxic in humans and can result in severe suppression of hematopoiesis, gastrointestinal toxicity,[3] and cardiac toxicity.[4] To date, several approaches, including delivery using liposomes (DOXIL),[5] have been developed to reduce the toxicity and enhance the clinical utility of this highly active antineoplastic agent.

496 citations


Journal ArticleDOI
TL;DR: These new nano-cargos have the ability to encapsulate efficiently lipophilic drugs, offering a pharmaceutical solution for their intravenous administration and should reduce considerably the cost and convenience for treatment.

469 citations


Journal ArticleDOI
TL;DR: Doxorubicin (DOX) is a potent available antitumor agent; however, its clinical use is limited because of its cardiotoxicity as discussed by the authors.However, DOX-induced cell death is a key component in DOX -induced cardio-oxicity, but its mec...
Abstract: Doxorubicin (DOX) is a potent available antitumor agent; however, its clinical use is limited because of its cardiotoxicity. Cell death is a key component in DOX-induced cardiotoxicity, but its mec...

323 citations


Journal ArticleDOI
TL;DR: The studies show the diverse responses to Adriamycin treatment in cells at different phases, suggest an unrecognized role of EMT in regulating MDR and invasion, and show the efficacy of Twist1 RNA interference in AdRIamycin-based chemotherapies for breast cancer.
Abstract: Purpose: Besides its therapeutic effects, chemotherapeutic agents also enhance the malignancy of treated cancers in clinical situations. Recently, epithelial-mesenchymal transition (EMT) has attracted attention in studies of tumor progression. We aimed to test whether transient Adriamycin treatment induces EMT and apoptosis simultaneously in cancer cells, clarify why the same type of cells responds differentially (i.e., apoptosis, EMT) to Adriamycin treatment, and elucidate the role of Twist1, the master regulator of EMT, in this process. Experimental Design: In unsynchronized MCF7 cells or cells synchronized at different phases, apoptosis, EMT, and concurrent events [multidrug resistance (MDR) and tumor invasion] after Adriamycin or/and Twist1 small interfering RNA treatment were examined in vitro and in vivo . The Adriamycin-induced Twist1 expression and the interaction of Twist1 with p53-Mdm2 were examined by immunoblotting and immunoprecipitation, respectively. Results: We showed in vitro that Adriamycin induced EMT and apoptosis simultaneously in a cell cycle–dependent manner. Only the cells undergoing EMT displayed enhanced invasion and MDR. Twist1 depletion completely blocked the mesenchymal transformation, partially reversed MDR, and greatly abolished invasion induced by Adriamycin. Also, we confirmed in vivo that Twist1 RNA interference improved the efficacy of Adriamycin for breast cancers. Further, Twist1 reduction in Adriamycin-treated cells promoted p53-dependent p21 induction and disrupted the association of p53 with Mdm2. Conclusions: Our studies show the diverse responses to Adriamycin treatment in cells at different phases, suggest an unrecognized role of EMT in regulating MDR and invasion, and show the efficacy of Twist1 RNA interference in Adriamycin-based chemotherapies for breast cancer.

316 citations


Journal ArticleDOI
TL;DR: A cell-based reporter gene assay provides a molecular basis for the antiangiogenic effect of anthracycline therapy and has important implications for refining the use of these drugs to treat human cancer more effectively.
Abstract: Using a cell-based reporter gene assay, we screened a library of drugs in clinical use and identified the anthracycline chemotherapeutic agents doxorubicin and daunorubicin as potent inhibitors of hypoxia-inducible factor 1 (HIF-1)-mediated gene transcription. These drugs inhibited HIF-1 by blocking its binding to DNA. Daily administration of doxorubicin or daunorubicin potently inhibited the transcription of a HIF-1-dependent reporter gene as well as endogenous HIF-1 target genes encoding vascular endothelial growth factor, stromal-derived factor 1, and stem cell factor in tumor xenografts. CXCR4+/sca1+, VEGFR2+/CD34+, and VEGFR2+/CD117+ bone-marrow derived cells were increased in the peripheral blood of SCID mice bearing prostate cancer xenografts but not in tumor-bearing mice treated for 5 days with doxorubicin or daunorubicin, which dramatically reduced tumor vascularization. These results provide a molecular basis for the antiangiogenic effect of anthracycline therapy and have important implications for refining the use of these drugs to treat human cancer more effectively.

286 citations


Journal ArticleDOI
TL;DR: Enhanced uptake and prolonged retention of doxorubicin were observed with nanoparticle-based formulations in P-gp-overexpressing cells, and injection of pegylated paclitaxel nanoparticles showed marked anticancer efficacy in nude mice bearing resistant NCI/ADR-RES tumors versus all control groups.
Abstract: To test the ability of nanoparticle formulations to overcome P-glycoprotein (P-gp)-mediated multidrug resistance, several different doxorubicin and paclitaxel-loaded lipid nanoparticles were prepared. Doxorubicin nanoparticles showed 6- to 8-fold lower IC(50) values in P-gp-overexpressing human cancer cells than those of free doxorubicin. The IC(50) value of paclitaxel nanoparticles was over 9-fold lower than that of Taxol in P-gp-overexpressing cells. A series of in vitro cell assays were used including quantitative studies on uptake and efflux, inhibition of calcein acetoxymethylester efflux, alteration of ATP levels, membrane integrity, mitochondrial membrane potential, apoptosis, and cytotoxicity. Enhanced uptake and prolonged retention of doxorubicin were observed with nanoparticle-based formulations in P-gp-overexpressing cells. Calcein acetoxymethylester and ATP assays confirmed that blank nanoparticles inhibited P-gp and transiently depleted ATP. I.v. injection of pegylated paclitaxel nanoparticles showed marked anticancer efficacy in nude mice bearing resistant NCI/ADR-RES tumors versus all control groups. Nanoparticles may be used to target both drug and biological mechanisms to overcome multidrug resistance via P-gp inhibition and ATP depletion.

275 citations


Journal ArticleDOI
TL;DR: It is demonstrated that passively tumor-targeted polymeric drug carriers can be used for delivering two different chemotherapeutic agents to tumors simultaneously, and they thereby set the stage for more elaborate analyses on the potential of polymer-based multi-drug targeting.

243 citations


Journal ArticleDOI
TL;DR: The data indicates the potential of doxorubicin loaded nanoparticles for oral chemotherapy as evident by enhanced bioavailability and lower toxicity and could be explored for new indications like leishmaniasis.
Abstract: Purpose Doxorubicin, a potent anticancer drug associated with cardiotoxicity and low oral bioavailability, was loaded into nanoparticles with a view to improve its performance.

227 citations


Journal ArticleDOI
TL;DR: In vivo evidence, at ultrastructural level, of direct hepatotoxicity caused by cisplatin, doxorubicin and 5-FU is provided at both light and electron microscopi to guide the design of appropriate treatment regimen to reduce the hepatotoxic effects of these anticancer drugs.
Abstract: Cisplatin, doxorubicin and fluorouracil (5-FU), drugs belonging to different chemical classes, have been extensively used for chemotherapy of various cancers. Despite extensive investigations into their hepatotoxicity, there is very limited information on their effects on the structure and ultra-structure of liver cells in vivo. Here, we demonstrate for the first time, the effects of these three anticancer drugs on rat liver toxicity using both light and electron microscopy. Light microscopic observations revealed that higher doses of cisplatin and doxorubicin caused massive hepatotoxicity compared to 5-FU treatment, including dissolution of hepatic cords, focal inflammation and necrotic tissues. Interestingly, low doses also exhibited abnormal changes, including periportal fibrosis, degeneration of hepatic cords and increased apoptosis. These changes were confirmed at ultrastructural level, including vesiculated rough endoplasmic reticulum and atrophied mitochondria with ill-differentiated cisternae, dense collection of macrophages and lymphocytes as well as fibrocytes with collagenous fibrils manifesting early sign of fibrosis, especially in response to cisplatin and doxorubicin -treatment. Our results provide in vivo evidence, at ultrastructural level, of direct hepatotoxicity caused by cisplatin, doxorubicin and 5-FU at both light and electron microscopi. These results can guide the design of appropriate treatment regimen to reduce the hepatotoxic effects of these anticancer drugs.

213 citations


Journal ArticleDOI
TL;DR: Cardiac safety of liposomal doxorubicin is similar to that of epirubic in cumulative dose, but that the formulation has similar anti-cancer efficacy to dox orubicIn at equimolar doses, and may have a better therapeutic index than non-liposomal anthracyclines.

Journal ArticleDOI
14 Aug 2009-ACS Nano
TL;DR: The fullerenol platform can be extended to other chemotherapeutic agents, such as the slightly water-soluble cisplatin, and can emerge as a new paradigm in the management of cancer.
Abstract: In the present study, we report the novel application of polyhydroxylated fullerenes (fullerenols) in cancer drug delivery. The facile synthetic procedure for generating multiple hydroxyl groups on the fullerene cage offers scope for high drug loading in addition to conferring hydrophilicity. Doxorubicin, a first line cancer chemotherapeutic, was conjugated to fullerenols through a carbamate linker, achieving ultrahigh loading efficiency. The drug−fullerenol conjugate was found to be relatively stable in phosphate buffer saline but temporally released the active drug when incubated with tumor cell lysate. The fullerenol−doxorubicin conjugate suppressed the proliferation of cancer cell-lines in vitro through a G2-M cell cycle block, resulting in apoptosis. Furthermore, in an in vivo murine tumor model, fullerenol−doxorubicin exhibited comparable antitumor efficacy as free drug without the systemic toxicity of free doxorubicin. Additionally, we demonstrate that the fullerenol platform can be extended to oth...

Journal ArticleDOI
TL;DR: It is suggested that doxorubicin treatment induces acute cardiac dysfunction and reduces cardiac mass via p53-dependent inhibition of mTOR signaling and that loss of myocardial mass, and not cardiomyocyte apoptosis, is the major contributor to acute doxorbicin cardiotoxicity.
Abstract: Background— Doxorubicin is used to treat childhood and adult cancer. Doxorubicin treatment is associated with both acute and chronic cardiotoxicity. The cardiotoxic effects of doxorubicin are cumulative, which limits its chemotherapeutic dose. Free radical generation and p53-dependent apoptosis are thought to contribute to doxorubicin-induced cardiotoxicity. Methods and Results— Adult transgenic (MHC-CB7) mice expressing cardiomyocyte-restricted dominant-interfering p53 and their nontransgenic littermates were treated with doxorubicin (20 mg/kg cumulative dose). Nontransgenic mice exhibited reduced left ventricular systolic function (predoxorubicin fractional shortening [FS] 61±2%, postdoxorubicin FS 45±2%, mean±SEM, P 0.008), norm...

Journal ArticleDOI
TL;DR: Investigating whether or not fluvastatin pretreatment can attenuate doxorubicin-induced cardiotoxicity via antioxidative and anti-inflammatory effects found it to be possible.
Abstract: Cardiotoxicity, which may result from intense cardiac oxidative stress and inflammation, is the main limiting factor of the anticancer therapy using doxorubicin. Because statins might exert beneficial pleiotropic cardiovascular effects, among other things, by anti-inflammatory and antioxidative mechanisms, we investigated whether or not fluvastatin pretreatment can attenuate doxorubicin-induced cardiotoxicity. Five days after a single injection of doxorubicin (20 mg/kg; i.p.), left ventricular (LV) function was measured in fluvastatin-treated (DoxStatin; 100 mg/kg/day, p.o.) and saline-treated (doxorubicin) mice (n = 8 per group) by a micro conductance catheter. Untreated mice served as controls (placebo; n = 8 per group). After measurement of cardiac function, LV tissues were analyzed by molecular biological and immunohistologic methods. Injection resulted in significantly impaired LV function (LV pressure, -29%; dp/dtmax, -45%; cardiac output, -68%; P < 0.05) when compared with placebo. This was associated with a significant increase in cardiac oxidative stress, inflammation and apoptotic mechanisms, as indicated by significant increased cardiac lipid peroxidation activity, protein expression of nitrotyrosine, tumor necrosis factor alpha and Bax (P < 0.05). In contrast, DoxStatin mice showed improved LV function (LV pressure, +24%; dp/dtmax, +87%; cardiac output, +87%; P < 0.05) when compared with untreated doxorubicin mice. This was associated with reduced cardiac expression of nitrotyrosine, enhanced expression of the mitochondrial located antioxidative SOD 2, attenuated mitochondrial apoptotic pathways, and reduced cardiac inflammatory response. Statin pretreatment attenuates doxorubicin-induced cardiotoxicity via antioxidative and anti-inflammatory effects.

Journal ArticleDOI
TL;DR: Doxorubicin-induced cardiotoxicity is mediated by oxidative DNA damage-ATM-p53-apoptosis pathway, and is attenuated by pitavastatin through its antioxidant effect involving Rac1 inhibition.

Journal ArticleDOI
Lihe Lu1, Wei-Kang Wu1, Jianyun Yan, Xiaohong Li, Huimin Yu, Xiyong Yu 
TL;DR: 3MA significantly improved cardiac function and reduced mitochondrial injury, and 3MA strongly downregulated the expression of beclin 1 in adriamycin-induced failing heart and inhibited the formation of autophagic vacuoles.

Journal ArticleDOI
TL;DR: Findings suggest that vorinostat can be combined with weekly doxorubicin in this schedule at a dose of 800 mg day−1, and the HDAC2 expression may be a marker predictive of HDAC inhibition.
Abstract: Histone deacetylase inhibitors (HDACi) can sensitise cancer cells to topoisomerase inhibitors by increasing their access and binding to DNA. This phase I trial was designed to determine the toxicity profile, tolerability, and recommended phase II dose of escalating doses of the HDACi vorinostat, with weekly doxorubicin. In total, 32 patients were treated; vorinostat was dosed at 400, 600, 800, or 1000 mg day−1 on days 1–3, followed by doxorubicin (20 mg m−2) on day 3 for 3 of 4 weeks. Maximal tolerated dose was determined to be 800 mg day−1 of vorinostat. Dose-limiting toxicities were grade 3 nausea/vomiting (two out of six) and fatigue (one out of six) at 1000 mg day−1. Non-dose-limiting grade 3/4 toxicities included haematological toxicity and venous thromboembolism. Antitumor activity in 24 evaluable patients included two partial responses (breast and prostate cancer). Two patients with melanoma had stable disease for ⩾8 months. Histone hyperacetylation changes in peripheral blood mononuclear and tumour cells were comparable. Histone hyperacetylation seemed to correlate with pre-treatment HDAC2 expression. These findings suggest that vorinostat can be combined with weekly doxorubicin in this schedule at a dose of 800 mg day−1. The HDAC2 expression may be a marker predictive of HDAC inhibition. Antitumor activity of this regimen in breast cancer, prostate cancer, and melanoma seems interesting.

Journal ArticleDOI
TL;DR: It is demonstrated that a small molecule inhibitor, LB-1.2, of protein phosphatase 2A (PP2A) activates Plk-1 and Akt- 1 and decreases p53 abundance in tumor cells, and Pharmacologic inhibition of PP2A may be a general method for enhancing the effectiveness of cancer treatments that damage DNA or disrupt components of cell replication.
Abstract: A variety of mechanisms maintain the integrity of the genome in the face of cell stress. Cancer cell response to chemotherapeutic and radiation-induced DNA damage is mediated by multiple defense mechanisms including polo-like kinase 1 (Plk-1), protein kinase B (Akt-1), and/or p53 pathways leading to either apoptosis or cell cycle arrest. Subsequently, a subpopulation of arrested viable cancer cells may remain and recur despite aggressive and repetitive therapy. Here, we show that modulation (activation of Akt-1 and Plk-1 and repression of p53) of these pathways simultaneously results in paradoxical enhancement of the effectiveness of cytotoxic chemotherapy. We demonstrate that a small molecule inhibitor, LB-1.2, of protein phosphatase 2A (PP2A) activates Plk-1 and Akt-1 and decreases p53 abundance in tumor cells. Combined with temozolomide (TMZ; a DNA-methylating chemotherapeutic drug), LB-1.2 causes complete regression of glioblastoma multiforme (GBM) xenografts without recurrence in 50% of animals (up to 28 weeks) and complete inhibition of growth of neuroblastoma (NB) xenografts. Treatment with either drug alone results in only short-term inhibition/regression with all xenografts resuming rapid growth. Combined with another widely used anticancer drug, Doxorubicin (DOX, a DNA intercalating agent), LB-1.2 also causes marked GBM xenograft regression, whereas DOX alone only slows growth. Inhibition of PP2A by LB-1.2 blocks cell-cycle arrest and increases progression of cell cycle in the presence of TMZ or DOX. Pharmacologic inhibition of PP2A may be a general method for enhancing the effectiveness of cancer treatments that damage DNA or disrupt components of cell replication.

Journal ArticleDOI
TL;DR: Lipid-modified dextran nanoparticles loaded with doxorubicin showed pronounced anti-proliferative effects against osteosarcoma cell lines, which may lead to new treatment options for MDR osteosARcoma.
Abstract: Background Drug resistance is a primary hindrance for the efficiency of chemotherapy against osteosarcoma. Although chemotherapy has improved the prognosis of osteosarcoma patients dramatically after introduction of neo-adjuvant therapy in the early 1980's, the outcome has since reached plateau at approximately 70% for 5 year survival. The remaining 30% of the patients eventually develop resistance to multiple types of chemotherapy. In order to overcome both the dose-limiting side effects of conventional chemotherapeutic agents and the therapeutic failure incurred from multidrug resistant (MDR) tumor cells, we explored the possibility of loading doxorubicin onto biocompatible, lipid-modified dextran-based polymeric nanoparticles and evaluated the efficacy.

Journal ArticleDOI
12 Jan 2009-PLOS ONE
TL;DR: This study isolated a novel peptide ligand from a phage-displayed peptide library that bound to non-small cell lung cancer (NSCLC) cell lines and suggests that this tumor-specific peptide may be used to create chemotherapies specifically targeting tumor cells in the treatment of NSCLC and to design targeted gene transfer vectors.
Abstract: Lung cancer is the leading cause of cancer-related mortality worldwide. The lack of tumor specificity remains a major drawback for effective chemotherapies and results in dose-limiting toxicities. However, a ligand-mediated drug delivery system should be able to render chemotherapy more specific to tumor cells and less toxic to normal tissues. In this study, we isolated a novel peptide ligand from a phage-displayed peptide library that bound to non-small cell lung cancer (NSCLC) cell lines. The targeting phage bound to several NSCLC cell lines but not to normal cells. Both the targeting phage and the synthetic peptide recognized the surgical specimens of NSCLC with a positive rate of 75% (27 of 36 specimens). In severe combined immunodeficiency (SCID) mice bearing NSCLC xenografts, the targeting phage specifically bound to tumor masses. The tumor homing ability of the targeting phage was inhibited by the cognate synthetic peptide, but not by a control or a WTY-mutated peptide. When the targeting peptide was coupled to liposomes carrying doxorubicin or vinorelbine, the therapeutic index of the chemotherapeutic agents and the survival rates of mice with human lung cancer xenografts markedly increased. Furthermore, the targeting liposomes increased drug accumulation in tumor tissues by 5.7-fold compared with free drugs and enhanced cancer cell apoptosis resulting from a higher concentration of bioavailable doxorubicin. The current study suggests that this tumor-specific peptide may be used to create chemotherapies specifically targeting tumor cells in the treatment of NSCLC and to design targeted gene transfer vectors or it may be used one in the diagnosis of this malignancy.

Journal ArticleDOI
TL;DR: Nanoparticle-mediated combination chemotherapy and PDT using doxorubicin and methylene blue was able to overcome resistance mechanisms and resulted in improved cytotoxicity in drug-resistant tumor cells.

Journal ArticleDOI
TL;DR: It is shown that doxorubicin treatment of rat cardiomyoblasts H9c2 triggers increases in caspase-3 like activity and hypoploid cells, both common features of apoptosis, and NADPH oxidases participate to doxorbicin-induced cardiac apoptosis.

Journal ArticleDOI
TL;DR: Investigation of the pathways to both apoptosis and senescence in neonatal rat cardiomyocytes and in H9c2 cells exposed to a single pulsed incubation with low or high doses of doxorubicin found varying levels of differential regulation of TRF1 and TRF2 through p53 and MAPK responsible for inducing either early apoptosis orsenescence and late death due to mitotic catastrophe.
Abstract: Low or high doses of doxorubicin induce either senescence or apoptosis, respectively, in cardiomyocytes. The mechanism by which different doses of doxorubicin may induce different stress-response c...

Journal ArticleDOI
TL;DR: Data show that IL-13 targeted nanovesicles are a viable option for the treatment of brain tumors in which the blood-brain barrier is not compromised and as a potential use of the nanovesicle system as a surveillance mechanism to prevent recurrence.
Abstract: Human glioblastoma tumors selectively express receptors for interleukin 13 (IL-13). In a previous study, we showed that liposomes, when conjugated with IL-13, will deliver chemotherapeutics to a subcutaneous glioma tumor model in mice much more effectively than conventional unconjugated liposomes. Based on this observation, we developed an intracranial brain tumor model in nude mice using human U87 glioma cells. Mice receiving weekly i.p. injections of 15 mg/kg of doxorubicin encapsulated in IL-13–conjugated liposomes had a 5-fold reduction in the intracranial tumor volume over 6 weeks and four of seven animals survived >200 days after tumor implantation. In contrast, the animals receiving unconjugated liposomes with the same doxorubicin concentration did not survive beyond 35 days and there was no evidence of tumor size reduction. The presence of liposomes with doxorubicin in the tumor was shown by taking advantage of the selective expression of IL-13 receptors on the tumor cells and the endogenous fluorescence of doxorubicin. There was no increase in the indices of toxicity in animals receiving the doxorubicin-containing liposomes. Finally, a model of the blood-brain barrier was used to show that the nanovesicles do not harm the endothelial cells yet maintain their toxicity to astrocytoma cells. This approach is necessary to show the efficacy of this targeting platform for tumors in which the blood-brain barrier is not compromised and as a potential use of the nanovesicle system as a surveillance mechanism to prevent recurrence. These data show that IL-13 targeted nanovesicles are a viable option for the treatment of brain tumors. [Mol Cancer Ther 2009;8(3):648–54]

Journal ArticleDOI
TL;DR: The results suggest that the level of NRF2 activity might be a determining factor for doxorubicin sensitivity in ovarian carcinoma cell lines and adaptive activation of theNRF2 system can participate in the development of acquired resistance to anthracycline therapy.

Journal ArticleDOI
TL;DR: This review focuses on the progress of targeted delivery of nanoparticulated anticancer drug such as doxorubicin chemically conjugated with dextran and encapsulated in chitosan nanoparticles to solid tumor with reduced side effect of drug.
Abstract: Chemotherapy is a major therapeutic approach for the treatment of localized and metastasized cancers. Whereas potent chemotherapeutic agents seem promising in the test tube, clinical trials often fail due to unfavorable pharmacokinetics, poor delivery, low local concentrations, and limited accumulation in the target cell. The pathophysiology of the tumor vasculature and stromal compartment presents a major obstacle to effective delivery of agents to solid tumors. Poor perfusion of the tumor, arterio-venous shunting, necrotic and hypoxic areas, as well as a high interstitial fluid pressure work against favorable drug uptake. Thus, targeted drug delivery using long-circulating particulate drug carriers such as hydrogels of controlled size (<100 nm diameter) holds immense potential to improve the treatment of cancer by selectively providing therapeutically effective drug concentrations at the tumor site [through enhanced permeability and retention (EPR) effect] while reducing undesirable side effects. This review focuses on the progress of targeted delivery of nanoparticulated anticancer drug such as doxorubicin chemically conjugated with dextran and encapsulated in chitosan nanoparticles to solid tumor with reduced side effect of drug. Regulated particle size and long circulation of these hydrogel nanoparticles in blood help them accumulate in tumor tissue through EPR effect as evident from the significant regression of the tumor volume. The cardiotoxicity of doxorubicin can be minimized by coupling the drug with dextran and encapsulating it in chitosan nanoparticles.

Journal ArticleDOI
TL;DR: The combination of photothermal therapy and chemotherapy may provide a valuable tool for cancer treatment with minimized side effect and, though not statistically significant, a synergistic effect may exist between DOX and laser-ICG photothermotherapy.
Abstract: Doxorubicin (DOX) is an anthracycline antibiotic widely used in cancer chemotherapy. Its use is limited by cardiac toxicity and drug resistance. Hyperthermia can aid the functionality of DOX, but current hyperthermia delivery methods are hard to apply selectively and locally. The slow temperature increase associated with the external heating may lead to thermal tolerance in cancer cells. The FDA approved dye indocynine green (ICG) has been demonstrated to absorb near-infrared (NIR) light at 808 nm (ideal for tissue penetration) and emit the energy as heat, making it an ideal agent for localized hyperthermia with a rapid rate of temperature increase. The purpose of this study was to investigate the in vitro cytotoxic effect of combined chemotherapy and hyperthermia to a DOX resistant ovarian cancer cell line (SKOV-3). The effect of two different heating methods, ICG induced rapid rate heating and an incubator induced slow rate heating, were compared. All the experiments were conducted in 96-well plates. Cells were subjected to different concentrations of DOX and 60 min 43 degrees C incubation or 5 microM of ICG with 1 min 808 nm NIR laser. SRB assay was used to measure cell proliferation. ICG itself without laser irradiation was not toxic to SKOV-3 cells. The two types of hyperthermia individually produced similar cytotoxicity. DOX by itself was toxic with an IC(50) value of about 5 microM. Hyperthermia in combination with DOX achieved significantly greater cell killing/growth inhibition at all DOX concentrations compared to DOX alone. A subadditive cytotoxic effect was observed by combining DOX and 60 min 43 degrees C incubation which lead to a lowered DOX IC(50) value of about 1 microM. This value was even lower with 1 min laser-ICG photothermotherapy (0.1 microM) and, though not statistically significant, a synergistic effect may exist between DOX and laser-ICG photothermotherapy. The rate of heating may have an effect on chemotherapy-hyperthermia interaction. In conclusion, the combination of photothermal therapy and chemotherapy may provide a valuable tool for cancer treatment with minimized side effect.

Journal ArticleDOI
TL;DR: Reversan represents a new class of nontoxic MRP1 inhibitor, which may be clinically useful for the treatment of neuroblastoma and other MRP 1-overexpressing drug-refractory tumors by increasing their sensitivity to conventional chemotherapy.
Abstract: The multidrug resistance-associated protein (MRP1) has been closely linked to poor treatment response in several cancers, most notably neuroblastoma. Homozygous deletion of the MRP1 gene in primary murine neuroblastoma tumors resulted in increased sensitivity to MRP1 substrate drugs (vincristine, etoposide, doxorubicin) compared to tumors containing both copies of wild-type MRP1, indicating that MRP1 plays a significant role in the drug resistance in this tumor type and defining this multidrug transporter as a target for pharmacological suppression. Cell-based readout system was created to functionally determine intracellular accumulation of MRP1 substrates using p53-responsive reporter as an indicator of drug-induced DNA damage. Screening of small molecule libraries in this readout system revealed pyrazolopyrimidines as a prominent structural class of potent MRP1 inhibitors. Reversan, the lead compound of this class, increased the efficacy of both vincristine and etoposide in murine models of neuroblastoma (syngeneic and human xenografts). As opposed to the majority of inhibitors of multidrug transporters, Reversan was not toxic by itself nor did it increase the toxicity of chemotherapeutic drug exposure in mice. Therefore, Reversan represents a new class of non-toxic MRP1 inhibitor, which may be clinically useful for the treatment of neuroblastoma and other MRP1 over-expressing drug refractory tumors by increasing their sensitivity to conventional chemotherapy.

Journal ArticleDOI
30 Jul 2009-Leukemia
TL;DR: It is reported that ABT-737 is highly effective as a single agent against most CLL samples, but that a sizable minority is relatively insensitive, and a potential role for combination therapies that include BH3 mimetics for the treatment of this disease is suggested.
Abstract: As chronic lymphocytic leukemia (CLL) is characterized by overexpression of pro-survival BCL2, compounds that mimic its physiological antagonists, the BH3-only proteins, may have a role in treatment of this disease. ABT-737 is a BH3 mimetic compound that selectively targets BCL2 and BCLX(L). In the present work, we report that ABT-737 is highly effective (LC(50)<50 nM) as a single agent against most (21/30) primary CLL samples, but that a sizable minority is relatively insensitive. In vitro sensitivity to ABT-737 could not be simply predicted by the patients' clinical features, including response to prior therapy or known prognostic markers (CD38 expression, 17p deletion), or the relative expression of BCL2 family proteins (BCL2, MCL1, BAX, BIM). Strikingly, co-incubation with cytotoxic agents (dexamethasone, etoposide, fludarabine, doxorubicin) sensitized most CLL samples to ABT-737, but this could not be predicted by responses to either ABT-737 or the cytotoxic agent alone. Of 17 samples least sensitive to ABT-737, 13 were sensitized by co-treatment with at least one cytotoxic agent. These data indicate that combination of ABT-737 with a second anti-leukemic agent would improve response rates and suggest a potential role for combination therapies that include BH3 mimetics for the treatment of this disease.

Journal ArticleDOI
TL;DR: In this article, Her2-targeted pegylated liposomal doxorubicin (PLD) retains its binding ability to Her2expressing target cells through circulation in the blood and extravasation to tumor interstitial fluid.