scispace - formally typeset
Search or ask a question

Showing papers on "Epileptogenesis published in 2018"


Journal ArticleDOI
TL;DR: Understanding the neurobiology of inflammation in epileptogenesis will contribute to the development of new biomarkers for better screening of patients at risk for epilepsy and new therapeutic targets for both prophylaxis and treatment of epilepsy.
Abstract: Epilepsy, a neurological disease characterized by recurrent seizures, is often associated with a history of previous lesions in the nervous system. Impaired regulation of the activation and resolution of inflammatory cells and molecules in the injured neuronal tissue is a critical factor to the development of epilepsy. However, it is still unclear as to how that unbalanced regulation of inflammation contributes to epilepsy. Therefore, one of the goals in epilepsy research is to identify and elucidate the interconnected inflammatory pathways in systemic and neurological disorders that may further develop epilepsy progression. In this paper, inflammatory molecules, in neurological and systemic disorders (rheumatoid arthritis, Crohn’s, Type I Diabetes, etc.) that could contribute to epilepsy development, are reviewed. Understanding the neurobiology of inflammation in epileptogenesis will contribute to the development of new biomarkers for better screening of patients at risk for epilepsy and new therapeutic targets for both prophylaxis and treatment of epilepsy.

327 citations


Journal ArticleDOI
TL;DR: The identification of impending epilepsy biomarkers to allow better patient selection, together with better alignment with multisite preclinical trials in animal models, should guide the clinical testing of new hypotheses for epileptogenesis and its prevention.
Abstract: The most common forms of acquired epilepsies arise following acute brain insults such as traumatic brain injury, stroke, or central nervous system infections. Treatment is effective for only 60%-70% of patients and remains symptomatic despite decades of effort to develop epilepsy prevention therapies. Recent preclinical efforts are focused on likely primary drivers of epileptogenesis, namely inflammation, neuron loss, plasticity, and circuit reorganization. This review suggests a path to identify neuronal and molecular targets for clinical testing of specific hypotheses about epileptogenesis and its prevention or modification. Acquired human epilepsies with different etiologies share some features with animal models. We identify these commonalities and discuss their relevance to the development of successful epilepsy prevention or disease modification strategies. Risk factors for developing epilepsy that appear common to multiple acute injury etiologies include intracranial bleeding, disruption of the blood-brain barrier, more severe injury, and early seizures within 1 week of injury. In diverse human epilepsies and animal models, seizures appear to propagate within a limbic or thalamocortical/corticocortical network. Common histopathologic features of epilepsy of diverse and mostly focal origin are microglial activation and astrogliosis, heterotopic neurons in the white matter, loss of neurons, and the presence of inflammatory cellular infiltrates. Astrocytes exhibit smaller K+ conductances and lose gap junction coupling in many animal models as well as in sclerotic hippocampi from temporal lobe epilepsy patients. There is increasing evidence that epilepsy can be prevented or aborted in preclinical animal models of acquired epilepsy by interfering with processes that appear common to multiple acute injury etiologies, for example, in post-status epilepticus models of focal epilepsy by transient treatment with a trkB/PLCγ1 inhibitor, isoflurane, or HMGB1 antibodies and by topical administration of adenosine, in the cortical fluid percussion injury model by focal cooling, and in the albumin posttraumatic epilepsy model by losartan. Preclinical studies further highlight the roles of mTOR1 pathways, JAK-STAT3, IL-1R/TLR4 signaling, and other inflammatory pathways in the genesis or modulation of epilepsy after brain injury. The wealth of commonalities, diversity of molecular targets identified preclinically, and likely multidimensional nature of epileptogenesis argue for a combinatorial strategy in prevention therapy. Going forward, the identification of impending epilepsy biomarkers to allow better patient selection, together with better alignment with multisite preclinical trials in animal models, should guide the clinical testing of new hypotheses for epileptogenesis and its prevention.

190 citations


Journal ArticleDOI
TL;DR: HMGB1 is suggested as a potential candidate to be a common biomarker of TBI, neuroinflammation, epileptogenesis, and cognitive dysfunctions which can be used for early prediction and progression of those neurological diseases.
Abstract: High mobility group box protein 1 (HMGB1) is a ubiquitous nuclear protein released by glia and neurons upon inflammasome activation and activates receptor for advanced glycation end products (RAGE) and toll-like receptor (TLR) 4 on the target cells HMGB1/TLR4 axis is a key initiator of neuroinflammation In recent days, more attention has been paid to HMGB1 due to its contribution in traumatic brain injury (TBI), neuroinflammatory conditions, epileptogenesis, and cognitive impairments and has emerged as a novel target for those conditions Nevertheless, HMGB1 has not been portrayed as a common prognostic biomarker for these HMGB1 mediated pathologies The current review discusses the contribution of HMGB1/TLR4/RAGE signaling in several brain injury, neuroinflammation mediated disorders, epileptogenesis and cognitive dysfunctions and in the light of available evidence, argued the possibilities of HMGB1 as a common viable biomarker of the above mentioned neurological dysfunctions Furthermore, the review also addresses the result of preclinical studies focused on HMGB1 targeted therapy by the HMGB1 antagonist in several ranges of HMGB1 mediated conditions and noted an encouraging result These findings suggest HMGB1 as a potential candidate to be a common biomarker of TBI, neuroinflammation, epileptogenesis, and cognitive dysfunctions which can be used for early prediction and progression of those neurological diseases Future study should explore toward the translational implication of HMGB1 which can open the windows of opportunities for the development of innovative therapeutics that could prevent several associated HMGB1 mediated pathologies discussed herein

187 citations


Journal ArticleDOI
01 Jun 2018-Brain
TL;DR: Findings from epidemiological, neuropsychological, molecular, electrophysiological and brain imaging perspectives suggest common mechanisms that might underlie the cognitive deficits observed in older people with epilepsy and individuals with dementia.
Abstract: With advances in healthcare and an ageing population, the number of older adults with epilepsy is set to rise substantially across the world. In developed countries the highest incidence of epilepsy is already in people over 65 and, as life expectancy increases, individuals who developed epilepsy at a young age are also living longer. Recent findings show that older persons with epilepsy are more likely to suffer from cognitive dysfunction and that there might be an important bidirectional relationship between epilepsy and dementia. Thus some people with epilepsy may be at a higher risk of developing dementia, while individuals with some forms of dementia, particularly Alzheimer's disease and vascular dementia, are at significantly higher risk of developing epilepsy. Consistent with this emerging view, epidemiological findings reveal that people with epilepsy and individuals with Alzheimer's disease share common risk factors. Recent studies in Alzheimer's disease and late-onset epilepsy also suggest common pathological links mediated by underlying vascular changes and/or tau pathology. Meanwhile electrophysiological and neuroimaging investigations in epilepsy, Alzheimer's disease, and vascular dementia have focused interest on network level dysfunction, which might be important in mediating cognitive dysfunction across all three of these conditions. In this review we consider whether seizures promote dementia, whether dementia causes seizures, or if common underlying pathophysiological mechanisms cause both. We examine the evidence that cognitive impairment is associated with epilepsy in older people (aged over 65) and the prognosis for patients with epilepsy developing dementia, with a specific emphasis on common mechanisms that might underlie the cognitive deficits observed in epilepsy and Alzheimer's disease. Our analyses suggest that there is considerable intersection between epilepsy, Alzheimer's disease and cerebrovascular disease raising the possibility that better understanding of shared mechanisms in these conditions might help to ameliorate not just seizures, but also epileptogenesis and cognitive dysfunction.

152 citations


Journal ArticleDOI
01 Jun 2018-Glia
TL;DR: This review will discuss how astrocyte dysfunction in epilepsy leads to distortion of key metabolic and biochemical mechanisms and metabolic therapeutic approaches that prevent the utilization of glucose might represent a potent antiepileptic strategy.
Abstract: Epilepsy is a complex neurological syndrome characterized by neuronal hyperexcitability and sudden, synchronized electrical discharges that can manifest as seizures. It is now increasingly recognized that impaired astrocyte function and energy homeostasis play key roles in the pathogenesis of epilepsy. Excessive neuronal discharges can only happen, if adequate energy sources are made available to neurons. Conversely, energy depletion during seizures is an endogenous mechanism of seizure termination. Astrocytes control neuronal energy homeostasis through neurometabolic coupling. In this review, we will discuss how astrocyte dysfunction in epilepsy leads to distortion of key metabolic and biochemical mechanisms. Dysfunctional glutamate metabolism in astrocytes can directly contribute to neuronal hyperexcitability. Closure of astrocyte intercellular gap junction coupling as observed early during epileptogenesis limits activity-dependent trafficking of energy metabolites, but also impairs clearance of the extracellular space from accumulation of K+ and glutamate. Dysfunctional astrocytes also increase the metabolism of adenosine, a metabolic product of ATP degradation that broadly inhibits energy-consuming processes as an evolutionary adaptation to conserve energy. Due to the critical role of astroglial energy homeostasis in the control of neuronal excitability, metabolic therapeutic approaches that prevent the utilization of glucose might represent a potent antiepileptic strategy. In particular, high fat low carbohydrate "ketogenic diets" as well as inhibitors of glycolysis and lactate metabolism are of growing interest for the therapy of epilepsy.

138 citations


Journal ArticleDOI
TL;DR: It is demonstrated that elevated mTOR signaling in mouse microglia leads to phenotypic changes, including an amoeboid-like morphology, increased proliferation, and robust phagocytosis activity, but without a significant induction of pro-inflammatory cytokines.

114 citations


Journal ArticleDOI
TL;DR: Well‐controlled subsequent analyses of epileptogenic cascades characterized in animal models using carefully stratified human hippocampal biopsies to exploit the unique opportunities given by these rare and precious brain tissue samples aim to translate into novel antiepileptogenic approaches.
Abstract: In many patients who suffer from epilepsies, recurrent epileptic seizures do not start at birth but develop later in life. This holds particularly true for epilepsies with a focal seizure origin including focal cortical dysplasias and temporal lobe epilepsy (TLE). TLE most frequently has its seizure onset in the hippocampal formation. Hippocampal biopsies of pharmacoresistant TLE patients undergoing epilepsy surgery for seizure control most frequently reveal the damage pattern of hippocampal sclerosis, that is, segmental neuronal cell loss and concomitant astrogliosis. Many TLE patients report on transient brain insults early in life, which is followed by a 'latency' period lacking seizure activity of months or even years before chronic recurrent seizures start. The plethora of structural and cellular mechanisms that convert the hippocampal formation to become chronically hyperexcitable after a transient insult to the brain are summarized under the term epileptogenesis. In contrast to the obstacles arising for experimental studies of epileptogenesis aspects in human surgical hippocampal tissue, recent animal model approaches allow insights into mechanisms of epileptogenesis. Relevant models of transient brain insults in this context comprise several distinct types of lesions including excitoxic status epilepticus (SE), electrical seizure induction, traumatic brain injury, induction of inflammatory processes by hyperthermia and viral inflammation and others. In pathogenetic terms, aberrant transcriptional and epigenetic reprogramming, acquired channel- and synaptopathies, neuronal network and blood-brain barrier dysfunction as well as innate and adaptive immunity-mediated damage play major roles. In subsequent steps, respective animal models have been used in order to test whether this dynamic process can be either retarded or even abolished by interfering with epileptogenic mechanisms. Well-controlled subsequent analyses of epileptogenic cascades characterized in animal models using carefully stratified human hippocampal biopsies to exploit the unique opportunities given by these rare and precious brain tissue samples aim to translate into novel antiepileptogenic approaches. Respective preclinical tests can open entirely new perspectives for tailor-made treatments in patients with the potential to avoid the emergence of chronic focal seizure events.

113 citations


Journal ArticleDOI
28 Mar 2018-Cells
TL;DR: The roles of microglia in the production of inflammatory cytokines, regulation of neurogenesis, and surveillance of the surrounding environment in epilepsy are focused on.
Abstract: Microglia are the resident immune cells in the brain that constitute the brain’s innate immune system. Recent studies have revealed various functions of microglia in the development and maintenance of the central nervous system (CNS) in both health and disease. However, the role of microglia in epilepsy remains largely undiscovered, partly because of the complex phenotypes of activated microglia. Activated microglia likely exert different effects on brain function depending on the phase of epileptogenesis. In this review, we mainly focus on the animal models of temporal lobe epilepsy (TLE) and discuss the proepileptic and antiepileptic roles of activated microglia in the epileptic brain. Specifically, we focus on the roles of microglia in the production of inflammatory cytokines, regulation of neurogenesis, and surveillance of the surrounding environment in epilepsy.

94 citations


Journal ArticleDOI
TL;DR: Spider venom peptide Hm1a restores the function of inhibitory interneurons from Dravet syndrome mice without affecting the firing of excitatory neurons, and provides a promising strategy for future drug development in genetic epilepsy and other neurogenetic disorders.
Abstract: Dravet syndrome is a catastrophic, pharmacoresistant epileptic encephalopathy. Disease onset occurs in the first year of life, followed by developmental delay with cognitive and behavioral dysfunction and substantially elevated risk of premature death. The majority of affected individuals harbor a loss-of-function mutation in one allele of SCN1A, which encodes the voltage-gated sodium channel NaV1.1. Brain NaV1.1 is primarily localized to fast-spiking inhibitory interneurons; thus the mechanism of epileptogenesis in Dravet syndrome is hypothesized to be reduced inhibitory neurotransmission leading to brain hyperexcitability. We show that selective activation of NaV1.1 by venom peptide Hm1a restores the function of inhibitory interneurons from Dravet syndrome mice without affecting the firing of excitatory neurons. Intracerebroventricular infusion of Hm1a rescues Dravet syndrome mice from seizures and premature death. This precision medicine approach, which specifically targets the molecular deficit in Dravet syndrome, presents an opportunity for treatment of this intractable epilepsy.

90 citations


Journal ArticleDOI
TL;DR: It is suggested that epilepsy and its neurobehavioral comorbidities are associated with elevated levels of several key inflammatory markers, and light is shed on the mechanistic association between epilepsy andIts neurobehaviorals.

88 citations


Journal ArticleDOI
01 May 2018-Brain
TL;DR: In this article, a novel strategy to increase endogenous antioxidant defences using RTA 408 was proposed, which activated nuclear factor erythroid 2-related factor 2 (Nrf2, encoded by NFE2L2) through inhibition of kelch like ECH associated protein 1 (KEAP1) through its primary sensor C151.
Abstract: Hippocampal sclerosis is a common acquired disease that is a major cause of drug-resistant epilepsy. A mechanism that has been proposed to lead from brain insult to hippocampal sclerosis is the excessive generation of reactive oxygen species, and consequent mitochondrial failure. Here we use a novel strategy to increase endogenous antioxidant defences using RTA 408, which we show activates nuclear factor erythroid 2-related factor 2 (Nrf2, encoded by NFE2L2) through inhibition of kelch like ECH associated protein 1 (KEAP1) through its primary sensor C151. Activation of Nrf2 with RTA 408 inhibited reactive oxygen species production, mitochondrial depolarization and cell death in an in vitro model of seizure-like activity. RTA 408 given after status epilepticus in vivo increased ATP, prevented neuronal death, and dramatically reduced (by 94%) the frequency of late spontaneous seizures for at least 4 months following status epilepticus. Thus, acute KEAP1 inhibition following status epilepticus exerts a neuroprotective and disease-modifying effect, supporting the hypothesis that reactive oxygen species generation is a key event in the development of epilepsy.

Journal ArticleDOI
TL;DR: LncRNA H19 contributes to hippocampal glial cell activation via modulation of the JAK/STAT pathway and could be a therapeutic tool to prevent the development of epilepsy.
Abstract: Astrocyte and microglia activation are well-known features of temporal lobe epilepsy that may contribute to epileptogenesis. However, the mechanisms underlying glia activation are not well understood. Long non-coding RNA (lncRNA) H19 has diverse functions depending on physiological or pathological state, and its role in epilepsy is unknown. We previously demonstrated that H19 was significantly upregulated in the latent period of epilepsy and may be associated with cell proliferation and immune and inflammatory responses. We therefore speculated that H19 is involved in the hippocampal glial cell activation during epileptogenesis. H19 was overexpressed or knocked down using an adeno-associated viral vector delivery system. A rat status epilepticus model was induced by intra-amygdala kainic acid injection. Astrocyte and microglia activation were assessed by immunofluorescence and western blot analyses. Expression of proinflammatory cytokines and components of the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling pathways were evaluated with western blotting. H19 overexpression induced the activation of astrocytes and microglia and the release of proinflammatory cytokines (interleukin-1β and interleukin-6 and tumor necrosis factor-α) in the hippocampus, whereas H19 knockdown inhibited status epilepticus-induced glial cell activation. Moreover, H19 activated JAK/STAT signaling by promoting the expression of Stat3 and c-Myc, which is thought to be involved in astrocyte activation. LncRNA H19 contributes to hippocampal glial cell activation via modulation of the JAK/STAT pathway and could be a therapeutic tool to prevent the development of epilepsy.

Journal ArticleDOI
TL;DR: To uncover the veil of scar formation in CNS may provide rewarding therapeutic targets to CNS diseases such as chronic neuroinflammation, brain stroke, spinal cord injury, traumatic brain injury, brain tumor, and epileptogenesis.
Abstract: Fibrosis is formed after injury in most of the organs as a common and complex response that profoundly affects regeneration of damaged tissue. In central nervous system (CNS), glial scar grows as a major physical and chemical barrier against regeneration of neurons as it forms dense isolation and creates an inhibitory environment, resulting in limitation of optimal neural function and permanent deficits of human body. In neurological damages, glial scar is mainly attributed to the activation of resident astrocytes which surrounds the lesion core and walls off intact neurons. Glial cells induce the infiltration of immune cells, resulting in transient increase in extracellular matrix deposition and inflammatory factors which inhibit axonal regeneration, impede functional recovery, and may contribute to the occurrence of neurological complications. However, recent studies have underscored the importance of glial scar in neural protection and functional improvement depending on the specific insults which involves various pivotal molecules and signaling. Thus, to uncover the veil of scar formation in CNS may provide rewarding therapeutic targets to CNS diseases such as chronic neuroinflammation, brain stroke, spinal cord injury (SCI), traumatic brain injury (TBI), brain tumor, and epileptogenesis. In this article, we try to describe the new portrait of glial scar and trending of research in neurological diseases to readers.

Journal ArticleDOI
TL;DR: Investigation of the role of high-mobility group box-1 (HMGB1) in mediating the activation of glial cells through the toll-like receptor 4 (TLR4)/nuclear factor (NF)-κB signaling pathway in seizure found overexpression of HMGB1 potentially promoted epileptogenesis.
Abstract: Epilepsy is a chronic and recurrent disease of the central nervous system, with a complex pathology. Recent studies have demonstrated that the activation of glial cells serve an important role in the development of epilepsy. The objective of the present study was to investigate the role of high‑mobility group box‑1 (HMGB1) in mediating the activation of glial cells through the toll‑like receptor 4 (TLR4)/nuclear factor (NF)‑κB signaling pathway in seizure, and the underlying mechanism. The brain tissue of post‑surgery patients with intractable epilepsy after resection and the normal control brain tissue of patients with craniocerebral trauma induced intracranial hypertension were collected. The expression level and distribution pattern of HMGB1, OX42 and NF‑κB p65 were detected by immunohistochemistry. HMGB1, TLR4, receptor for advanced glycation end products (RAGE), NF‑κB p65 and inducible nitric oxide synthase (iNOS) expression levels were detected by western blotting, and serum cytokine levels of interleukin (IL)‑1, IL‑6, tumor necrosis factor (TNF)‑α, transforming growth factor (TGF)‑β and IL‑10 in patients with epilepsy and craniocerebral trauma were detected by ELISA. And cell model of epilepsy was established by coriaria lactone (CL)‑stimulated HM cell, and the same factors were measured. The potential toxic effect of HMGB1 on HM cells was evaluated by MTT and 5‑ethynyl‑2‑deoxyuridine assays. The results demonstrated that compared with the control group, levels of HMGB1, TLR4, RAGE, NF‑κB p65 and iNOS in the brain of the epilepsy group were significantly increased, and increased cytokine levels of IL‑1, IL‑6, TNF‑α, TGF‑β and IL‑10 in patients with epilepsy were also observed. At the same time, the above results were also observed in HM cells stimulated with CL. Overexpression of HMGB1 enhanced the results, while HMGB1 small interfering RNA blocked the function of CL. There was no significant toxic effect of HMGB1 on HM cells. In conclusion, overexpression of HMGB1 potentially promoted epileptogenesis. CL‑induced activation of glial cells may act via up‑regulation of HMGB1 and TLR4/RAGE receptors, and the downstream transcription factor NF‑κB.

Journal ArticleDOI
TL;DR: The epigenetic mechanisms implicated in epileptogenesis and epilepsy are summarized, the influence of metabolic factors on epigenetic mechanism exploration is explored, and the potential of using epigenetic markers to support diagnosis and prognosis is assessed.
Abstract: Epilepsy is a common and devastating neurological disorder characterized by recurrent and unprovoked spontaneous seizures. One leading hypothesis for the development and progression of epilepsy is that large-scale changes in gene transcription and protein expression contribute to aberrant network restructuring and hyperexcitability, resulting in the genesis of repeated seizures. Current research shows that epigenetic mechanisms, including posttranslational alterations to the proteins around which DNA is coiled, chemical modifications to DNA, and the activity of various noncoding RNA molecules exert important influences on these gene networks in experimental epilepsy. Key findings from animal models have been replicated in humans using brain tissue obtained from living patients at the time of neurosurgical resection for pharmacoresistant epilepsy. These findings have spurred efforts to target epigenetic processes to disrupt or modify epilepsy in experimental models with varying degrees of success. In this review, we will (1) summarize the epigenetic mechanisms implicated in epileptogenesis and epilepsy, (2) explore the influence of metabolic factors on epigenetic mechanisms, and (3) assess the potential of using epigenetic markers to support diagnosis and prognosis. Translation of these findings may guide the development of molecular biomarkers and novel therapeutics for prevention or modification of epileptic disorders.

Journal ArticleDOI
TL;DR: This study provides direct evidence of a BRAF somatic mutation contributing to the intrinsic epileptogenicity in pediatric brain tumors and suggests that BRAF and REST could be treatment targets for intractable epilepsy.
Abstract: Pediatric brain tumors are highly associated with epileptic seizures1 However, their epileptogenic mechanisms remain unclear Here, we show that the oncogenic BRAF somatic mutation pVal600Glu (V600E) in developing neurons underlies intrinsic epileptogenicity in ganglioglioma, one of the leading causes of intractable epilepsy2 To do so, we developed a mouse model harboring the BRAFV600E somatic mutation during early brain development to reflect the most frequent mutation, as well as the origin and timing thereof Therein, the BRAFV600E mutation arising in progenitor cells during brain development led to the acquisition of intrinsic epileptogenic properties in neuronal lineage cells, whereas tumorigenic properties were attributed to high proliferation of glial lineage cells RNA sequencing analysis of patient brain tissues with the mutation revealed that BRAFV600E-induced epileptogenesis is mediated by RE1-silencing transcription factor (REST), which is a regulator of ion channels and neurotransmitter receptors associated with epilepsy Moreover, we found that seizures in mice were significantly alleviated by an FDA-approved BRAFV600E inhibitor, vemurafenib, as well as various genetic inhibitions of Rest Accordingly, this study provides direct evidence of a BRAF somatic mutation contributing to the intrinsic epileptogenicity in pediatric brain tumors and suggests that BRAF and REST could be treatment targets for intractable epilepsy

Journal ArticleDOI
01 Nov 2018-Brain
TL;DR: Boosting endogenous resolution responses by administering a specific lipid mediator improves disease outcomes in a murine epilepsy model, suggesting a novel treatment avenue.
Abstract: Epilepsy therapy is based on drugs that treat the symptoms rather than the underlying mechanisms of the disease (epileptogenesis). There are no treatments for preventing seizures or improving disease prognosis, including neurological comorbidities. The search of pathogenic mechanisms of epileptogenesis highlighted that neuroinflammatory cytokines [i.e. interleukin-1β (IL-1β), tumour necrosis factor-α (Tnf-α)] are induced in human and experimental epilepsies, and contribute to seizure generation in animal models. A major role in controlling the inflammatory response is played by specialized pro-resolving lipid mediators acting on specific G-protein coupled receptors. Of note, the role that these pathways have in epileptogenic tissue remains largely unexplored. Using a murine model of epilepsy, we show that specialized pro-resolving mechanisms are activated by status epilepticus before the onset of spontaneous seizures, but with a marked delay as compared to the neuroinflammatory response. This was assessed by measuring the time course of mRNA levels of 5-lipoxygenase (Alox5) and 15-lipoxygenase (Alox15), the key biosynthetic enzymes of pro-resolving lipid mediators, versus Il1b and Tnfa transcripts and proteins. In the same hippocampal tissue, we found a similar delayed expression of two main pro-resolving receptors, the lipoxin A4 receptor/formyl peptide receptor 2 and the chemerin receptor. These receptors were also induced in the human hippocampus after status epilepticus and in patients with temporal lobe epilepsy. This evidence supports the hypothesis that the neuroinflammatory response is sustained by a failure to engage pro-resolving mechanisms during epileptogenesis. Lipidomic LC-MS/MS analysis showed that lipid mediator levels apt to resolve the neuroinflammatory response were also significantly altered in the hippocampus during epileptogenesis with a shift in the biosynthesis of several pro-resolving mediator families including the n-3 docosapentaenoic acid (DPA)-derived protectin D1. Of note, intracerebroventricular injection of this mediator during epileptogenesis in mice dose-dependently reduced the hippocampal expression of both Il1b and Tnfa mRNAs. This effect was associated with marked improvement in mouse weight recovery and rescue of cognitive deficit in the novel object recognition test. Notably, the frequency of spontaneous seizures was drastically reduced by 2-fold on average and the average seizure duration was shortened by 40% after treatment discontinuation. As a result, the total time spent in seizures was reduced by 3-fold in mice treated with n-3 DPA-derived protectin D1. Taken together, the present findings demonstrate that epilepsy is characterized by an inadequate engagement of resolution pathways. Boosting endogenous resolution responses significantly improved disease outcomes, providing novel treatment avenues.

Journal ArticleDOI
01 Oct 2018-Brain
TL;DR: Evidence is provided for the occurrence of a blood-brain barrier dysfunction, which is temporally and anatomically associated with epileptic seizures, which may spark the development of new functional imaging modalities for the post hoc visualization of brain areas affected by the seizure.
Abstract: Epilepsy has been associated with a dysfunction of the blood-brain barrier. While there is ample evidence that a dysfunction of the blood-brain barrier contributes to epileptogenesis, blood-brain barrier dysfunction as a consequence of single epileptic seizures has not been systematically investigated. We hypothesized that blood-brain barrier dysfunction is temporally and anatomically associated with epileptic seizures in patients and used a newly-established quantitative MRI protocol to test our hypothesis. Twenty-three patients with epilepsy undergoing inpatient monitoring as part of their presurgical evaluation were included in this study (10 females, mean age ± standard deviation: 28.78 ± 8.45). For each patient, we acquired quantitative T1 relaxation time maps (qT1) after both ictal and interictal injection of gadolinium-based contrast agent. The postictal enhancement of contrast agent was quantified by subtracting postictal qT1 from interictal qT1 and the resulting ΔqT1 was used as a surrogate imaging marker of peri-ictal blood-brain barrier dysfunction. Additionally, the serum concentrations of MMP9 and S100, both considered biomarkers of blood-brain barrier dysfunction, were assessed in serum samples obtained prior to and after the index seizure. Fifteen patients exhibited secondarily generalized tonic-clonic seizures and eight patients exhibited focal seizures at ictal injection of contrast agent. By comparing ΔqT1 of the generalized tonic-clonic seizures and focal seizures groups, the anatomical association between ictal epileptic activity and postictal enhancement of contrast agent could be probed. The generalized tonic-clonic seizures group showed significantly higher ΔqT1 in the whole brain as compared to the focal seizures group. Specific analysis of scans acquired later than 3 h after the onset of the seizure revealed higher ΔqT1 in the generalized tonic-clonic seizures group as compared to the focal seizures group, which was strictly lateralized to the hemisphere of seizure onset. Both MMP9 and S100 showed a significantly increased postictal concentration. The current study provides evidence for the occurrence of a blood-brain barrier dysfunction, which is temporally and anatomically associated with epileptic seizures. qT1 after ictal contrast agent injection is rendered as valuable imaging marker of seizure-associated blood-brain barrier dysfunction and may be measured hours after the seizure. The observation of the strong anatomical association of peri-ictal blood-brain barrier dysfunction may spark the development of new functional imaging modalities for the post hoc visualization of brain areas affected by the seizure.

Journal ArticleDOI
TL;DR: Current evidences suggest that inhibiting BDNF-TrkB signaling and reinforcing the NPY system could represent a potential therapeutic strategy for epilepsy, especially for temporal lobe epilepsy.

Journal ArticleDOI
TL;DR: The EXIST-3 trial provided the first evaluation of the optimal dosage, conferring a higher chance of reducing seizure frequency and severity, with adverse events being similar to what observed with lower dosages.
Abstract: Introduction. The mammalian target of rapamycin (mTOR) pathway has emerged as a key player for proper neural network development, and it is involved in epileptogenesis triggered by both genetic or ...

Journal ArticleDOI
16 Jul 2018
TL;DR: The up‐to‐date experimental and clinical evidence that supports the neuromodulatory role of inflammatory mediators, their related signaling pathways, and involvement in epilepsy are reported on.
Abstract: Increasing evidence supports a pathogenic role of unabated neuroinflammation in various central nervous system (CNS) diseases, including epilepsy. Neuroinflammation is not a bystander phenomenon of the diseased brain tissue, but it may contribute to neuronal hyperexcitability underlying seizure generation, cell loss, and neurologic comorbidities. Several molecules, which constitute the inflammatory milieu in the epileptogenic area, activate signaling pathways in neurons and glia resulting in pathologic modifications of cell function, which ultimately lead to alterations in synaptic transmission and plasticity. Herein we report the up-to-date experimental and clinical evidence that supports the neuromodulatory role of inflammatory mediators, their related signaling pathways, and involvement in epilepsy. We discuss how these mechanisms can be harnessed to discover and validate targets for novel therapeutics, which may prevent or control pharmacoresistant epilepsies.

Journal ArticleDOI
TL;DR: Advances in intracranial technology are needed to confirm the epilepsy network hypothesis and improve surgical outcomes by providing individualised therapies based on specific network contributions.
Abstract: Summary Intracranial electrophysiological recording in patients with refractory focal epilepsy is the gold standard for defining epileptogenic tissue. Although the concordance of intracranial electrophysiology, structural MRI, and pathology can identify brain regions for resection, complete seizure control after surgery is not achieved in all patients with focal epilepsy. Repetitive identical behavioural seizures suggest one onset area, but epileptogenesis might be distributed and connected by functional and structural brain networks outside the seizure onset area, which could explain poor postsurgical outcomes in some patients. Similar networks are postulated in neuropsychiatric disorders, such as depression and anxiety, and seem to overlap with posited epilepsy networks, perhaps explaining the high prevalence of comorbid neuropsychiatric disorders in patients with epilepsy. These networks are difficult to verify with available electrophysiological recording approaches. Advances in intracranial technology are needed to confirm the epilepsy network hypothesis and improve surgical outcomes by providing individualised therapies based on specific network contributions.

Journal ArticleDOI
TL;DR: In humans, mutations of the γ‐aminobutyric acid receptor subunit 1 (GABRA1) cause either mild or severe generalized epilepsy and the epilepsy‐causing mutations have been shown to disrupt the receptor activity in vitro.
Abstract: Objective: In humans, mutations of the γ-aminobutyric acid receptor subunit 1 (GABRA1) cause either mild or severe generalized epilepsy. Although these epilepsy causing mutations have been shown to disrupt the receptor activity in vitro, their in vivo consequences on brain development and activity are not known. Here, we aim at unraveling the epileptogenesis mechanisms of GABRA1 loss of function. Methods: We generated a gabra1 −/− zebrafish mutant line displaying highly pen-etrant epileptic seizures. We sought to identify the underlying molecular mechanisms through unbiased whole transcriptomic assay of gabra1 −/− larval brains. Results: Interestingly, mutant fish show fully penetrant seizures at juvenile stages that accurately mimic tonic-clonic generalized seizures observed in patients. Moreover , highly penetrant seizures can be induced by light stimulation, thus providing us with the first zebrafish model in which evident epileptic seizures can be induced by nonchemical agents. Our transcriptomic assay identified misregulated genes in several pathways essential for correct brain development. More specifically, we show that the early development of the brain inhibitory network is specifically affected. Although the number of GABAergic neurons is not altered, we observed a drastic reduction in the number of inhibitory synapses and a decreased complexity of the GABAergic network. This is consistent with the disruption in expression of many genes involved in axon guidance and synapse formation. Significance: Together with the role of GABA in neurodevelopment, our data identify a novel aspect of epileptogenesis, suggesting that the substratum of GABRA1-deficiency epilepsy is a consequence of early brain neurodevelopmental defects, in particular at the level of inhibitory network wiring.This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

Journal ArticleDOI
TL;DR: Because brain inflammation may contribute to the pathophysiology of temporal lobe epilepsy, the expression of various inflammatory markers of the innate and adaptive immune system in the epileptogenic human and rat hippocampus in relation to seizure activity and blood‐brain barrier dysfunction is investigated.
Abstract: Objective: Because brain inflammation may contribute to the pathophysiology of temporal lobe epilepsy (TLE), we investigated the expression of various inflammatory markers of the innate and adaptive immune system in the epileptogenic human and rat hippocampus in relation to seizure activity and blood-brain barrier (BBB) dysfunction. Methods: Immunohistochemistry was performed using various immune cell markers (for microglia, monocytes, macrophages, T lymphocytes, and dendritic cells) on hippocampal sections of drug-resistant TLE patients and patients who died after status epilepticus. The expression of these markers was also studied in the electrical post–status epilepticus rat model for TLE, during the acute, latent, and chronic epileptic phase. BBB dysfunction was assessed using albumin immunohistochemistry and the BBB tracer fluorescein. Results: Monocyte infiltration, microglia, and perivascular macrophage activation were persistently increased in both epileptogenic human and rat hippocampus, whereas T lymphocytes and dendritic cells were not or were scarcely detected. In addition to this, increased expression of C-C motif ligand 2 (CCL2) and osteopontin was observed. In humans, the expression of CD68 and CCL2 was related to the duration of epilepsy and type of pathology. In rats, the expression of CD68, CCL2, and the perivascular macrophage marker CD163 was related to the duration of the initial insult and to the number of spontaneous seizures. Interestingly, the number of CD163-positive perivascular macrophages was also positively correlated to BBB dysfunction in chronic epileptic rats. Significance: These data suggest a proepileptogenic role for monocytes/macrophages and other cells of the innate immune response, possibly via increased BBB leakage, and indicate that T cells and dendritic cells, which are closely associated with the adaptive immune response, are only sparsely infiltrated during epileptogenesis in the electrical post–status epilepticus rat model. Future studies should reveal the relative importance of these immune cells and whether specific manipulation can modify or prevent epileptogenesis.

Journal ArticleDOI
01 Dec 2018-Glia
TL;DR: These findings indicate that targeting the coupling of TNFα with astrocyte purinergic signaling may be a therapeutic strategy for reducing glial glutamate release and normalizing synaptic activity in epilepsy.
Abstract: Epilepsy is characterized by unpredictable recurrent seizures resulting from abnormal neuronal excitability. Increasing evidence indicates that aberrant astrocyte signaling to neurons plays an important role in driving the network hyperexcitability, but the underlying mechanism that alters glial signaling in epilepsy remains unknown. Increase in glutamate release by astrocytes participates in the onset and progression of seizures. Epileptic seizures are also accompanied by increase of tumor necrosis factor alpha (TNFα), a cytokine involved in the regulation of astrocyte glutamate release. Here we tested whether TNFα controls abnormal astrocyte glutamate signaling in epilepsy and through which mechanism. Combining Ca2+ imaging, optogenetics, and electrophysiology, we report that TNFα triggers a Ca2+ -dependent glutamate release from astrocytes that boosts excitatory synaptic activity in the hippocampus through a mechanism involving autocrine activation of P2Y1 receptors by astrocyte-derived ATP/ADP. In a mouse model of temporal lobe epilepsy, such TNFα-driven astrocytic purinergic signaling is permanently active, promotes glial glutamate release, and drives abnormal synaptic activity in the hippocampus. Blocking this pathway by inhibiting P2Y1 receptors restores normal excitatory synaptic activity in the inflamed hippocampus. Our findings indicate that targeting the coupling of TNFα with astrocyte purinergic signaling may be a therapeutic strategy for reducing glial glutamate release and normalizing synaptic activity in epilepsy.

Journal ArticleDOI
TL;DR: Results indicate the occurrence of pericytosis during seizures and introduce a pericyte-microglial mediated mechanism of blood-brain barrier dysfunction in epilepsy.

Journal ArticleDOI
TL;DR: In this paper, the authors compared the effects of status epilepticus (SE) induction and characterization in mice and rats induced by kainate and discussed the advantages of repeated low dose of Kainate (i.p. route), which minimizes variability in the initial SE severity between animals and reduces mortality rate.
Abstract: Various etiological factors such as head injury, chemical intoxication, tumors, and gene mutation can induce epileptogenesis. In animal models, status epilepticus (SE) triggers epileptogenesis. In humans, convulsive SE for >30 minutes can be a life threatening medical emergency. The duration and severity of convulsive SE are highly variable in chemoconvulsant animal models. A continuous video-EEG recording, and/or diligent direct observation, facilitates quantification of exact duration of different stages of convulsive seizures (Racine stages 3-5) to determine the severity of SE. A continuous convulsive SE for >30 minutes usually causes high mortality in some rodents and results in widespread brain damage in the surviving animals, in spite of treating with antiepileptic drugs (AEDs). AEDs control behavioral seizures, but not EEG seizures. The severity of initial SE impacts epileptogenesis and cognitive function, therefore, quantitative assessment of behavioral SE and EEG in animal models is useful to understand the impact of SE severity on epileptogenesis. There are several excellent reviews on experimental models of seizure/SE/epilepsy. This review focusses on the comparison of induction and characterization of behavioral SE and EEG correlates in mice and rats induced by kainate. We also discuss the advantages of repeated low dose of kainate (i.p. route), which minimizes variability in the initial SE severity between animals and reduces mortality rate. A refined approach to induce SE with kainate also addresses the two of the 3Rs (i.e., refinement and reduction), the guiding principles for ethical and scientific standpoint of animal research.

Journal ArticleDOI
TL;DR: The role of mossy fiber sprouting in seizure generation and hippocampal excitability is highlighted and the response of alternative treatment strategies in terms of MFS and spontaneous recurrent seizures in models of TLE (temporal lobe epilepsy) are discussed.
Abstract: Mesial temporal lobe epilepsy (MTLE) caused by hippocampal sclerosis is one of the most frequent focal epilepsies in adults. It is characterized by focal seizures that begin in the hippocampus, sometimes spread to the insulo-perisylvian regions and may progress to secondary generalized seizures. Morphological alterations in hippocampal sclerosis are well defined. Among them, hippocampal sclerosis is characterized by prominent cell loss in the hilus and CA1, and abnormal mossy fiber sprouting (granular cell axons) into the dentate gyrus inner molecular layer. In this review, we highlight the role of mossy fiber sprouting in seizure generation and hippocampal excitability and discuss the response of alternative treatment strategies in terms of MFS and spontaneous recurrent seizures in models of TLE (temporal lobe epilepsy).

Journal ArticleDOI
TL;DR: The use of KA as a convulsant in the experimental models of acute seizures of TLE is discussed, the involvement of KARs, their subunit composition and the mode of action in KAR-mediated epilepsy are considered, and evidence points to epileptogenesis being precipitated by an overall depression of interneuron GABAergic transmission mediated by GluK1 containing KAR
Abstract: Kainate (KA) is a potent neurotoxin that has been widely used experimentally to induce acute brain seizures and, after repetitive treatments, as a chronic model of temporal lobe epilepsy (TLE), with similar features to those observed in human patients with TLE. However, whether KA activates KA receptors (KARs) as an agonist to mediate the induction of acute seizures and/or the chronic phase of epilepsy, or whether epileptogenic effects of the neurotoxin are indirect and/or mediated by other types of receptors, has yet to be satisfactorily elucidated. Positing a direct involvement of KARs in acute seizures induction, as well as a direct pathophysiological role of KARs in the chronic phase of TLE, recent studies have examined the specific subunit compositions of KARs that might underly epileptogenesis. In the present mini-review, we discuss the use of KA as a convulsant in the experimental models of acute seizures of TLE, and consider the involvement of KARs, their subunit composition and the mode of action in KAR-mediated epilepsy. In acute models, evidence points to epileptogenesis being precipitated by an overall depression of interneuron GABAergic transmission mediated by GluK1 containing KARs. On glutamatergic principal cell in the hippocampus, GluK2-containing KARs regulate post-synaptic excitability and susceptibility to KA-mediated epileptogenesis. In chronic models, a role GluK2-containing KARs in the hippocampal CA3 region provokes limbic seizures. Also observed in the hippocampus, is a 'reactive plasticity', where MF sprouting is seen with target granule cells at aberrant synapses recruiting de novo GluR2/GluR5 heteromeric KARs. Finally, in human epilepsy and animal models, astrocytic expression of GluK1, 2, 4, and 5 is reported.

Journal ArticleDOI
TL;DR: This review focuses on the functional and structural changes in astrocytic activity that participate in the development and maintenance of status epilepticus, with special attention on concurrent inflammatory alterations.
Abstract: Status epilepticus is a medical emergency with elevated morbidity and mortality rates, and represents a leading cause of epilepsy-related deaths. Though status epilepticus can occur at any age, it manifests more likely in children and elderly people. Despite the common prevalence of epileptic disorders, a complete explanation for the mechanisms leading to development of self-limited or long lasting seizures (as in status epilepticus) are still lacking. Apart from neurons, research evidence suggests the involvement of immune and glial cells in epileptogenesis. Among glial cells, astrocytes represent an ideal target for the study of the pathophysiology of status epilepticus, due to their key role in homeostatic balance of the central nervous system. During status epilepticus, astroglial cells are activated by the presence of cytokines, damage associated molecular patterns and reactive oxygen species. The persistent activation of astrocytes leads to a decrease in glutamate clearance with a corresponding accumulation in the synaptic extracellular space, increasing the chance of neuronal excitotoxicity. Moreover, major alterations in astrocytic gap junction coupling, inflammation and receptor expression, facilitate the generation of seizures. Astrocytes are also involved in dysregulation of inhibitory transmission in the central nervous system and directly participate in ionic homeostatic alterations during status epilepticus. In the present review, we focus on the functional and structural changes in astrocytic activity that participate in the development and maintenance of status epilepticus, with special attention on concurrent inflammatory alterations. We also include potential astrocytic treatment targets for status epilepticus.