scispace - formally typeset
Search or ask a question

Showing papers on "Global warming published in 2013"


Journal ArticleDOI
TL;DR: In this paper, the authors look at observations and model projections from 1923 to 2010, to test the ability of models to predict future drought conditions, which inspires confidence in their projections of drought.
Abstract: Historical records show increased aridity over many land areas since 1950. This study looks at observations and model projections from 1923 to 2010, to test the ability of models to predict future drought conditions. Models are able to capture the greenhouse-gas forcing and El Nino–Southern Oscillation mode for historical periods, which inspires confidence in their projections of drought.

3,385 citations


Book ChapterDOI
TL;DR: The North Atlantic Oscillation (NAO) is one of the most prominent and recurrent patterns of atmospheric circulation variability as discussed by the authors, and it dictates climate variability from the eastern seaboard of the United States to Siberia and from the Arctic to the subtropical Atlantic, especially during boreal winter.
Abstract: The North Atlantic Oscillation (NAO) is one of the most prominent and recurrent patterns of atmospheric circulation variability. It dictates climate variability from the eastern seaboard of the United States to Siberia and from the Arctic to the subtropical Atlantic, especially during boreal winter, so variations in the NAO are important to society and for the environment. Understanding the processes that govern this variability is, therefore, of high priority, especially in the context of global climate change. This review, aimed at a scientifically diverse audience, provides general background material for the other chapters in the monograph, and it synthesizes some of their central points. It begins with a description of the spatial structure of climate and climate variability, including how the NAO relates to other prominent patterns of atmospheric circulation variability. There is no unique way to define the spatial structure of the NAO, or thus its temporal evolution, but several common approaches are illustrated. The relationship between the NAO and variations in surface temperature, storms and precipitation, and thus the economy, as well as the ocean and ecosystem responses to NAO variability, are described. Although the NAO is a mode of variability internal to the atmosphere, indices of it exhibit decadal variability and trends. That not all of its variability can be attributed to intraseasonal stochastic atmospheric processes points to a role for external forcings and, perhaps, a small but useful amount of predictability. The surface, stratospheric and anthropogenic processes that may influence the phase and amplitude of the NAO are reviewed.

1,712 citations


Journal ArticleDOI
TL;DR: This article presented the global general circulation model IPSL-CM5 developed to study the long-term response of the climate system to natural and anthropogenic forcings as part of the 5th Phase of the Coupled Model Intercomparison Project (CMIP5).
Abstract: We present the global general circulation model IPSL-CM5 developed to study the long-term response of the climate system to natural and anthropogenic forcings as part of the 5th Phase of the Coupled Model Intercomparison Project (CMIP5). This model includes an interactive carbon cycle, a representation of tropospheric and stratospheric chemistry, and a comprehensive representation of aerosols. As it represents the principal dynamical, physical, and bio-geochemical processes relevant to the climate system, it may be referred to as an Earth System Model. However, the IPSL-CM5 model may be used in a multitude of configurations associated with different boundary conditions and with a range of complexities in terms of processes and interactions. This paper presents an overview of the different model components and explains how they were coupled and used to simulate historical climate changes over the past 150 years and different scenarios of future climate change. A single version of the IPSL-CM5 model (IPSL-CM5A-LR) was used to provide climate projections associated with different socio-economic scenarios, including the different Representative Concentration Pathways considered by CMIP5 and several scenarios from the Special Report on Emission Scenarios considered by CMIP3. Results suggest that the magnitude of global warming projections primarily depends on the socio-economic scenario considered, that there is potential for an aggressive mitigation policy to limit global warming to about two degrees, and that the behavior of some components of the climate system such as the Arctic sea ice and the Atlantic Meridional Overturning Circulation may change drastically by the end of the twenty-first century in the case of a no climate policy scenario. Although the magnitude of regional temperature and precipitation changes depends fairly linearly on the magnitude of the projected global warming (and thus on the scenario considered), the geographical pattern of these changes is strikingly similar for the different scenarios. The representation of atmospheric physical processes in the model is shown to strongly influence the simulated climate variability and both the magnitude and pattern of the projected climate changes.

1,526 citations


Journal ArticleDOI
TL;DR: In this paper, the authors discuss the environmental drivers of phenology, and the impacts of climate change on phenology in different biomes, and assess the potential impact on these feedbacks of shifts in phenology driven by climate change.

1,522 citations


Journal ArticleDOI
TL;DR: This article synthesized all available studies of the consistency of marine ecological observations with expectations under climate change This yielded a meta-database of 1,735 marine biological responses for which either regional or global climate change was considered as a driver.
Abstract: Research that combines all available studies of biological responses to regional and global climate change shows that 81–83% of all observations were consistent with the expected impacts of climate change These findings were replicated across taxa and oceanic basins Past meta-analyses of the response of marine organisms to climate change have examined a limited range of locations1,2, taxonomic groups2,3,4 and/or biological responses5,6 This has precluded a robust overview of the effect of climate change in the global ocean Here, we synthesized all available studies of the consistency of marine ecological observations with expectations under climate change This yielded a meta-database of 1,735 marine biological responses for which either regional or global climate change was considered as a driver Included were instances of marine taxa responding as expected, in a manner inconsistent with expectations, and taxa demonstrating no response From this database, 81–83% of all observations for distribution, phenology, community composition, abundance, demography and calcification across taxa and ocean basins were consistent with the expected impacts of climate change Of the species responding to climate change, rates of distribution shifts were, on average, consistent with those required to track ocean surface temperature changes Conversely, we did not find a relationship between regional shifts in spring phenology and the seasonality of temperature Rates of observed shifts in species’ distributions and phenology are comparable to, or greater, than those for terrestrial systems

1,504 citations


Journal ArticleDOI
19 Sep 2013-Nature
TL;DR: The results show that the current hiatus is part of natural climate variability, tied specifically to a La-Niña-like decadal cooling, and the multi-decadal warming trend is very likely to continue with greenhouse gas increase.
Abstract: Despite the continued increase in atmospheric greenhouse gas concentrations, the annual-mean global temperature has not risen in the twenty-first century, challenging the prevailing view that anthropogenic forcing causes climate warming. Various mechanisms have been proposed for this hiatus in global warming, but their relative importance has not been quantified, hampering observational estimates of climate sensitivity. Here we show that accounting for recent cooling in the eastern equatorial Pacific reconciles climate simulations and observations. We present a novel method of uncovering mechanisms for global temperature change by prescribing, in addition to radiative forcing, the observed history of sea surface temperature over the central to eastern tropical Pacific in a climate model. Although the surface temperature prescription is limited to only 8.2% of the global surface, our model reproduces the annual-mean global temperature remarkably well with correlation coefficient r = 0.97 for 1970-2012 (which includes the current hiatus and a period of accelerated global warming). Moreover, our simulation captures major seasonal and regional characteristics of the hiatus, including the intensified Walker circulation, the winter cooling in northwestern North America and the prolonged drought in the southern USA. Our results show that the current hiatus is part of natural climate variability, tied specifically to a La-Nina-like decadal cooling. Although similar decadal hiatus events may occur in the future, the multi-decadal warming trend is very likely to continue with greenhouse gas increase.

1,427 citations


Journal ArticleDOI
TL;DR: In this article, the Max-Planck-Institute Earth System Model (MPI-ESM) is used in the Coupled Model Intercomparison Project phase 5 (CMIP5) in a series of climate change experiments for either idealized CO2-only forcing or forcings based on observations and the Representative Concentration Pathway (RCP) scenarios.
Abstract: [1] The new Max-Planck-Institute Earth System Model (MPI-ESM) is used in the Coupled Model Intercomparison Project phase 5 (CMIP5) in a series of climate change experiments for either idealized CO2-only forcing or forcings based on observations and the Representative Concentration Pathway (RCP) scenarios. The paper gives an overview of the model configurations, experiments related forcings, and initialization procedures and presents results for the simulated changes in climate and carbon cycle. It is found that the climate feedback depends on the global warming and possibly the forcing history. The global warming from climatological 1850 conditions to 2080–2100 ranges from 1.5°C under the RCP2.6 scenario to 4.4°C under the RCP8.5 scenario. Over this range, the patterns of temperature and precipitation change are nearly independent of the global warming. The model shows a tendency to reduce the ocean heat uptake efficiency toward a warmer climate, and hence acceleration in warming in the later years. The precipitation sensitivity can be as high as 2.5% K−1 if the CO2 concentration is constant, or as small as 1.6% K−1, if the CO2 concentration is increasing. The oceanic uptake of anthropogenic carbon increases over time in all scenarios, being smallest in the experiment forced by RCP2.6 and largest in that for RCP8.5. The land also serves as a net carbon sink in all scenarios, predominantly in boreal regions. The strong tropical carbon sources found in the RCP2.6 and RCP8.5 experiments are almost absent in the RCP4.5 experiment, which can be explained by reforestation in the RCP4.5 scenario.

1,344 citations


Journal ArticleDOI
13 Sep 2013-Science
TL;DR: There is more agreement across studies regarding the influence of climate on human conflict than has been recognized previously and warmer temperatures or extremes of rainfall can be causally associated with changes in interpersonal violence and in civil war.
Abstract: A rapidly growing body of research examines whether human conflict can be affected by climatic changes. Drawing from archeology, criminology, economics, geography, history, political science, and psychology, we assemble and analyze the 60 most rigorous quantitative studies and document, for the first time, a remarkable convergence of results. We find strong causal evidence linking climatic events to human conflict across a range of spatial and temporal scales and across all major regions of the world. The magnitude of climate's influence is substantial: for each 1 standard deviation (1σ) change in climate toward warmer temperatures or more extreme rainfall, median estimates indicate that the frequency of interpersonal violence rises 4% and the frequency of intergroup conflict rises 14%. Because locations throughout the inhabited world are expected to warm 2-4σ by 2050, amplified rates of human conflict could represent a large and critical impact of anthropogenic climate change.

1,315 citations


Journal ArticleDOI
08 Mar 2013-Science
TL;DR: Recon reconstructions of the past 1500 years suggest that recent warming is unprecedented in that time, and regional and global temperature anomalies for the past 11,300 years from 73 globally distributed records are provided.
Abstract: Surface temperature reconstructions of the past 1500 years suggest that recent warming is unprecedented in that time. Here we provide a broader perspective by reconstructing regional and global temperature anomalies for the past 11,300 years from 73 globally distributed records. Early Holocene (10,000 to 5000 years ago) warmth is followed by ~0.7°C cooling through the middle to late Holocene (<5000 years ago), culminating in the coolest temperatures of the Holocene during the Little Ice Age, about 200 years ago. This cooling is largely associated with ~2°C change in the North Atlantic. Current global temperatures of the past decade have not yet exceeded peak interglacial values but are warmer than during ~75% of the Holocene temperature history. Intergovernmental Panel on Climate Change model projections for 2100 exceed the full distribution of Holocene temperature under all plausible greenhouse gas emission scenarios.

1,281 citations


Journal ArticleDOI
TL;DR: There is a differential effect of climate change both in terms of geographic location and the crops that will likely show the most extreme reductions in yield as a result of expected extreme fluctuations in temperature and global warming in general.
Abstract: Global warming is predicted to have a general negative effect on plant growth due to the damaging effect of high temperatures on plant development. The increasing threat of climatological extremes including very high temperatures might lead to catastrophic loss of crop productivity and result in wide spread famine. In this review, we assess the impact of global climate change on the agricultural crop production. There is a differential effect of climate change both in terms of geographic location and the crops that will likely show the most extreme reductions in yield as a result of expected extreme fluctuations in temperature and global warming in general. High temperature stress has a wide range of effects on plants in terms of physiology, biochemistry and gene regulation pathways. However, strategies exist to crop improvement for heat stress tolerance. In this review, we present recent advances of research on all these levels of investigation and focus on potential leads that may help to understand more fully the mechanisms that make plants tolerant or susceptible to heat stress. Finally, we review possible procedures and methods which could lead to the generation of new varieties with sustainable yield production, in a world likely to be challenged both by increasing population, higher average temperatures and larger temperature fluctuations.

1,252 citations


Journal ArticleDOI
05 Dec 2013-Nature
TL;DR: It is argued that flood protection by ecosystem creation and restoration can provide a more sustainable, cost-effective and ecologically sound alternative to conventional coastal engineering and that it should be implemented globally and on a large scale.
Abstract: The risk of flood disasters is increasing for many coastal societies owing to global and regional changes in climate conditions, sea-level rise, land subsidence and sediment supply. At the same time, in many locations, conventional coastal engineering solutions such as sea walls are increasingly challenged by these changes and their maintenance may become unsustainable. We argue that flood protection by ecosystem creation and restoration can provide a more sustainable, cost-effective and ecologically sound alternative to conventional coastal engineering and that, in suitable locations, it should be implemented globally and on a large scale.

Journal ArticleDOI
TL;DR: This article reviewed the connection between these two issues and concluded that limits to availability of fossil fuels will set a limit for mankind's ability to affect the climate, however, this limit is unclear as various studies have reached quite different conclusions regarding future atmospheric CO2 concentrations caused by fossil fuel limitations.

Book ChapterDOI
19 Mar 2013
TL;DR: In this article, a 3D global climate model was proposed for experiments in which solar irra- diance So is increased 2 percent or C02 is doubled, and the contributions of different physical processes to the cooling of the last ice age (18K years ago).
Abstract: We study climate sensitivity and feedback processes in three independent ways : (1) by using a three dimensional (3-D) global cli- mate model for experiments in which solar irra- diance So is increased 2 percent or C02 is doubled, (2) by using the CLIMAP climate boun- dary conditions to analyze the contributions of different physical processes to the cooling of the last ice age (18K years ago), and (3) by using estimated changes in global temperature and the abundance of atmospheric greenhouse gases to deduce an empirical climate sensitivity for the period 1850-1980. Our 3-D global climate model yields a warming of -4OC for either a 2 percent increase of So or doubled C02. This indicates a net feedback fac- tor of f = 3-4, because either of these forcings would cause the earth's surface temperature to warm 1.2-1.3OC to restore radiative balance with space, if other factors remained unchanged. Principal positive feedback processes in the model are changes in atmospheric water vapor, clouds and snow lice cover. Feedback factors calculated for these processes, with atmospheric dynamical feedbacks implicitly incorporated, are respectively fwater va or - 1.6. fclouds - 1.3 and fsnqw/ice - 1.1, wiph the latter mainly caused by sea ice changes. A number of potential feed- backs, such as land ice cover, vegetation cover and ocean heat transport were held fixed in these experiments. We calculate land ice, sea ice and vegetation feedback 1.2-1.3, 1.05-1

Journal ArticleDOI
TL;DR: In this article, the authors used climate, water, economic, and remote sensing data combined with biophysical modeling to understand the drivers of the "Millennium Drought" and its impacts.
Abstract: [1] The “Millennium Drought” (2001–2009) can be described as the worst drought on record for southeast Australia. Adaptation to future severe droughts requires insight into the drivers of the drought and its impacts. These were analyzed using climate, water, economic, and remote sensing data combined with biophysical modeling. Prevailing El Nino conditions explained about two thirds of rainfall deficit in east Australia. Results for south Australia were inconclusive; a contribution from global climate change remains plausible but unproven. Natural processes changed the timing and magnitude of soil moisture, streamflow, and groundwater deficits by up to several years, and caused the amplification of rainfall declines in streamflow to be greater than in normal dry years. By design, river management avoided impacts on some categories of water users, but did so by exacerbating the impacts on annual irrigation agriculture and, in particular, river ecosystems. Relative rainfall reductions were amplified 1.5–1.7 times in dryland wheat yields, but the impact was offset by steady increases in cropping area and crop water use efficiency (perhaps partly due to CO2 fertilization). Impacts beyond the agricultural sector occurred (e.g., forestry, tourism, utilities) but were often diffuse and not well quantified. Key causative pathways from physical drought to the degradation of ecological, economic, and social health remain poorly understood and quantified. Combined with the multiple dimensions of multiyear droughts and the specter of climate change, this means future droughts may well break records in ever new ways and not necessarily be managed better than past ones.

Journal ArticleDOI
TL;DR: In 2011, the waters along the west coast of Australia experienced an unprecedented (in recorded times) warming event with warming anomalies of 2-4°C that persisted for more than ten weeks.
Abstract: In 2011 the waters along the west coast of Australia—a global hotspot of biodiversity—experienced an unprecedented (in recorded times) warming event with warming anomalies of 2–4 °C that persisted for more than ten weeks. Now research shows that biodiversity patterns of temperate seaweeds, invertebrates and fishes were significantly different following the warming event.

Journal ArticleDOI
TL;DR: In this article, the authors evaluated 20-year temperature and precipitation extremes and their projected future changes in an ensemble of climate models participating in the Coupled Model Intercomparison Project Phase 5 (CMIP5), updating a similar study based on the CMIP3 ensemble.
Abstract: Twenty-year temperature and precipitation extremes and their projected future changes are evaluated in an ensemble of climate models participating in the Coupled Model Intercomparison Project Phase 5 (CMIP5), updating a similar study based on the CMIP3 ensemble. The projected changes are documented for three radiative forcing scenarios. The performance of the CMIP5 models in simulating 20-year temperature and precipitation extremes is comparable to that of the CMIP3 ensemble. The models simulate late 20th century warm extremes reasonably well, compared to estimates from reanalyses. The model discrepancies in simulating cold extremes are generally larger than those for warm extremes. Simulated late 20th century precipitation extremes are plausible in the extratropics but uncertainty in extreme precipitation in the tropics and subtropics remains very large, both in the models and the observationally-constrained datasets. Consistent with CMIP3 results, CMIP5 cold extremes generally warm faster than warm extremes, mainly in regions where snow and sea-ice retreat with global warming. There are tropical and subtropical regions where warming rates of warm extremes exceed those of cold extremes. Relative changes in the intensity of precipitation extremes generally exceed relative changes in annual mean precipitation. The corresponding waiting times for late 20th century extreme precipitation events are reduced almost everywhere, except for a few subtropical regions. The CMIP5 planetary sensitivity in extreme precipitation is about 6 %/°C, with generally lower values over extratropical land.

Journal ArticleDOI
TL;DR: The latest carbon dioxide emissions continue to track the high end of emission scenarios, making it even less likely global warming will stay below 2 °C as mentioned in this paper, with a probable reliance on net negative emissions in the longer term.
Abstract: The latest carbon dioxide emissions continue to track the high end of emission scenarios, making it even less likely global warming will stay below 2 °C A shift to a 2 °C pathway requires immediate significant and sustained global mitigation, with a probable reliance on net negative emissions in the longer term

Journal ArticleDOI
TL;DR: An up-to-date synthesis of estimates of global CH4 emissions from wetlands and other freshwater aquatic ecosystems is provided, major biogeophysical controls over CH4 emitters from wetlands are summarized, new frontiers in CH4 biogeochemistry are suggested, and relationships between methanogen community structure and CH4 dynamics in situ are examined.
Abstract: Understanding the dynamics of methane (CH4) emissions is of paramount importance because CH4 has 25 times the global warming potential of carbon dioxide (CO2) and is currently the second most important anthropogenic greenhouse gas. Wetlands are the single largest natural CH4 source with median emissions from published studies of 164 Tg yr 1 , which is about a third of total global emissions. We provide a perspective on important new frontiers in obtaining a better understanding of CH4 dynamics in natural systems, with a focus on wetlands. One of the most exciting recent developments in this field is the attempt to integrate the different methodologies and spatial scales of biogeochemistry, molecular microbiology, and modeling, and thus this is a major focus of this review. Our specific objectives are to provide an up-to-date synthesis of estimates of global CH4 emissions from wetlands and other freshwater aquatic ecosystems, briefly summarize major biogeophysical controls over CH4 emissions from wetlands, suggest new frontiers in CH4 biogeochemistry, examine relationships between methanogen community structure and CH4 dynamics in situ, and to review the current generation of CH4 models. We highlight throughout some of the most pressing issues concerning global change and feedbacks on CH4 emissions from natural ecosystems. Major uncertainties in estimating current and future CH4 emissions from natural ecosystems include the following: (i) A number of important controls over CH4 production, consumption, and transport have not been, or are inadequately, incorporated into existing CH4 biogeochemistry models. (ii) Significant errors in regional and global emission estimates are derived from large spatial-scale extrapolations from highly heterogeneous and often poorly mapped wetland complexes. (iii) The limited number of observations of CH4 fluxes and their associated environmental variables loosely constrains the parameterization of process-based biogeochemistry models.

Journal ArticleDOI
TL;DR: In this article, the authors show that most wetlands, when compared to methane emissions, do not have 25 times more CO2 sequestration than methane emissions; therefore, to many landscape managers and non specialists, most wetlands would be considered by some to be sources of climate warming or net radiative forcing.
Abstract: Wetland ecosystems provide an optimum natural environment for the sequestration and long-term storage of carbon dioxide (CO2) from the atmosphere, yet are natural sources of greenhouse gases emissions, especially methane. We illustrate that most wetlands, when carbon sequestration is compared to methane emissions, do not have 25 times more CO2 sequestration than methane emissions; therefore, to many landscape managers and non specialists, most wetlands would be considered by some to be sources of climate warming or net radiative forcing. We show by dynamic modeling of carbon flux results from seven detailed studies by us of temperate and tropical wetlands and from 14 other wetland studies by others that methane emissions become unimportant within 300 years compared to carbon sequestration in wetlands. Within that time frame or less, most wetlands become both net carbon and radiative sinks. Furthermore, we estimate that the world’s wetlands, despite being only about 5–8 % of the terrestrial landscape, may currently be net carbon sinks of about 830 Tg/year of carbon with an average of 118 g-C m−2 year−1 of net carbon retention. Most of that carbon retention occurs in tropical/subtropical wetlands. We demonstrate that almost all wetlands are net radiative sinks when balancing carbon sequestration and methane emissions and conclude that wetlands can be created and restored to provide C sequestration and other ecosystem services without great concern of creating net radiative sources on the climate due to methane emissions.

Journal ArticleDOI
12 Jun 2013-PLOS ONE
TL;DR: This study presents a framework for assessing three dimensions of climate change vulnerability, namely sensitivity, exposure and adaptive capacity, and finds that high concentration areas for species with traits conferring highest sensitivity and lowest adaptive capacity differ from those of highly exposed species.
Abstract: Climate change will have far-reaching impacts on biodiversity, including increasing extinction rates. Current approaches to quantifying such impacts focus on measuring exposure to climatic change and largely ignore the biological differences between species that may significantly increase or reduce their vulnerability. To address this, we present a framework for assessing three dimensions of climate change vulnerability, namely sensitivity, exposure and adaptive capacity; this draws on species’ biological traits and their modeled exposure to projected climatic changes. In the largest such assessment to date, we applied this approach to each of the world’s birds, amphibians and corals (16,857 species). The resulting assessments identify the species with greatest relative vulnerability to climate change and the geographic areas in which they are concentrated, including the Amazon basin for amphibians and birds, and the central Indo-west Pacific (Coral Triangle) for corals. We found that high concentration areas for species with traits conferring highest sensitivity and lowest adaptive capacity differ from those of highly exposed species, and we identify areas where exposure-based assessments alone may over or under-estimate climate change impacts. We found that 608–851 bird (6–9%), 670–933 amphibian (11– 15%), and 47–73 coral species (6–9%) are both highly climate change vulnerable and already threatened with extinction on the IUCN Red List. The remaining highly climate change vulnerable species represent new priorities for conservation. Fewer species are highly climate change vulnerable under lower IPCC SRES emissions scenarios, indicating that reducing greenhouse emissions will reduce climate change driven extinctions. Our study answers the growing call for a more biologically and ecologically inclusive approach to assessing climate change vulnerability. By facilitating independent assessment of the three dimensions of climate change vulnerability, our approach can be used to devise species and areaspecific conservation interventions and indices. The priorities we identify will strengthen global strategies to mitigate climate change impacts.

Journal ArticleDOI
TL;DR: The proximate causes of climate-change related extinctions and their empirical support are reviewed to support the idea that changing species interactions are an important cause of documented population declines and extinctions related to climate change.
Abstract: Anthropogenic climate change is predicted to be a major cause of species extinctions in the next 100 years. But what will actually cause these extinctions? For example, will it be limited physiological tolerance to high temperatures, changing biotic interactions or other factors? Here, we systematically review the proximate causes of climate-change related extinctions and their empirical support. We find 136 case studies of climatic impacts that are potentially relevant to this topic. However, only seven identified proximate causes of demonstrated local extinctions due to anthropogenic climate change. Among these seven studies, the proximate causes vary widely. Surprisingly, none show a straightforward relationship between local extinction and limited tolerances to high temperature. Instead, many studies implicate species interactions as an important proximate cause, especially decreases in food availability. We find very similar patterns in studies showing decreases in abundance associated with climate change, and in those studies showing impacts of climatic oscillations. Collectively, these results highlight our disturbingly limited knowledge of this crucial issue but also support the idea that changing species interactions are an important cause of documented population declines and extinctions related to climate change. Finally, we briefly outline general research strategies for identifying these proximate causes in future studies.

Book
08 Feb 2013
TL;DR: In this paper, the authors present a history of how scientists learned to understand the atmosphere, to measure it, trace its past, and model its future, and to predict the future of the world's climate.
Abstract: Global warming skeptics often fall back on the argument that the scientific case for global warming is all model predictions, nothing but simulation; they warn us that we need to wait for real data, "sound science." In A Vast Machine Paul Edwards has news for these skeptics: without models, there are no data. Today, no collection of signals or observations -- even from satellites, which can "see" the whole planet with a single instrument -- becomes global in time and space without passing through a series of data models. Everything we know about the world's climate we know through models. Edwards offers an engaging and innovative history of how scientists learned to understand the atmosphere -- to measure it, trace its past, and model its future.

Journal ArticleDOI
TL;DR: The authors showed that climate change could lead to a major redistribution of vegetation across the Arctic, with important implications for biosphere-atmosphere interactions, as well as for biodiversity conservation and ecosystem services.
Abstract: This study shows that climate change could lead to a major redistribution of vegetation across the Arctic, with important implications for biosphere–atmosphere interactions, as well as for biodiversity conservation and ecosystem services. Woody vegetation is predicted to expand substantially over coming decades, causing more Arctic warming through positive climate feedbacks than previously thought.

Journal ArticleDOI
TL;DR: To reduce the uncertainties and to improve the precision of the predictions of the impacts of climate change and human activities on biogeochemical cycles, efforts should focus on conducting more field observation studies, integrating data within improved models, and developing new knowledge about coupling among carbon, nitrogen, and phosphorus bioge biochemical cycles.
Abstract: With a pace of about twice the observed rate of global warming, the temperature on the Qinghai-Tibetan Plateau (Earth's third pole') has increased by 0.2 degrees C per decade over the past 50years, which results in significant permafrost thawing and glacier retreat. Our review suggested that warming enhanced net primary production and soil respiration, decreased methane (CH4) emissions from wetlands and increased CH4 consumption of meadows, but might increase CH4 emissions from lakes. Warming-induced permafrost thawing and glaciers melting would also result in substantial emission of old carbon dioxide (CO2) and CH4. Nitrous oxide (N2O) emission was not stimulated by warming itself, but might be slightly enhanced by wetting. However, there are many uncertainties in such biogeochemical cycles under climate change. Human activities (e.g. grazing, land cover changes) further modified the biogeochemical cycles and amplified such uncertainties on the plateau. If the projected warming and wetting continues, the future biogeochemical cycles will be more complicated. So facing research in this field is an ongoing challenge of integrating field observations with process-based ecosystem models to predict the impacts of future climate change and human activities at various temporal and spatial scales. To reduce the uncertainties and to improve the precision of the predictions of the impacts of climate change and human activities on biogeochemical cycles, efforts should focus on conducting more field observation studies, integrating data within improved models, and developing new knowledge about coupling among carbon, nitrogen, and phosphorus biogeochemical cycles as well as about the role of microbes in these cycles.

Journal ArticleDOI
21 Feb 2013-Nature
TL;DR: It is estimated that over tropical land from latitude 30° north to 30° south, warming alone will release 53 ± 17 gigatonnes of carbon per kelvin, which indicates a much lower risk of Amazon forest dieback under CO2-induced climate change if CO2 fertilization effects are as large as suggested by current models.
Abstract: A linear relationship between the sensitivity of tropical land carbon storage to warming and the sensitivity of the annual growth rate of atmospheric CO2 to tropical temperature anomalies provides a tight constraint on the sensitivity of tropical land carbon to climate change. In response to climate change, tropical forests may release vast amounts of carbon, accelerating the pace of further climate change. Or they may not: research to date has been conflicting and controversial. Peter Cox and colleagues now use the response of the tropical land carbon cycle to interannual climate variability to constrain the likely future response. They find that the tropics will emit 53 ± 17 gigatonnes of carbon per degree of warming, a much more muted response that suggested in previous work. The release of carbon from tropical forests may exacerbate future climate change1, but the magnitude of the effect in climate models remains uncertain2. Coupled climate–carbon-cycle models generally agree that carbon storage on land will increase as a result of the simultaneous enhancement of plant photosynthesis and water use efficiency under higher atmospheric CO2 concentrations, but will decrease owing to higher soil and plant respiration rates associated with warming temperatures3. At present, the balance between these effects varies markedly among coupled climate–carbon-cycle models, leading to a range of 330 gigatonnes in the projected change in the amount of carbon stored on tropical land by 2100. Explanations for this large uncertainty include differences in the predicted change in rainfall in Amazonia4,5 and variations in the responses of alternative vegetation models to warming6. Here we identify an emergent linear relationship, across an ensemble of models7, between the sensitivity of tropical land carbon storage to warming and the sensitivity of the annual growth rate of atmospheric CO2 to tropical temperature anomalies8. Combined with contemporary observations of atmospheric CO2 concentration and tropical temperature, this relationship provides a tight constraint on the sensitivity of tropical land carbon to climate change. We estimate that over tropical land from latitude 30° north to 30° south, warming alone will release 53 ± 17 gigatonnes of carbon per kelvin. Compared with the unconstrained ensemble of climate–carbon-cycle projections, this indicates a much lower risk of Amazon forest dieback under CO2-induced climate change if CO2 fertilization effects are as large as suggested by current models9. Our study, however, also implies greater certainty that carbon will be lost from tropical land if warming arises from reductions in aerosols10 or increases in other greenhouse gases11.

Journal ArticleDOI
10 Oct 2013-Nature
TL;DR: A new index of the year when the projected mean climate of a given location moves to a state continuously outside the bounds of historical variability under alternative greenhouse gas emissions scenarios is presented.
Abstract: Ecological and societal disruptions by modern climate change are critically determined by the time frame over which climates shift beyond historical analogues. Here we present a new index of the year when the projected mean climate of a given location moves to a state continuously outside the bounds of historical variability under alternative greenhouse gas emissions scenarios. Using 1860 to 2005 as the historical period, this index has a global mean of 2069 (±18 years s.d.) for near-surface air temperature under an emissions stabilization scenario and 2047 (±14 years s.d.) under a 'business-as-usual' scenario. Unprecedented climates will occur earliest in the tropics and among low-income countries, highlighting the vulnerability of global biodiversity and the limited governmental capacity to respond to the impacts of climate change. Our findings shed light on the urgency of mitigating greenhouse gas emissions if climates potentially harmful to biodiversity and society are to be prevented.

Journal ArticleDOI
TL;DR: This review compares how fast plants need to move with how fast they can move with the velocity of climate change, which shows how much of a problem failure to track climate change is likely to be.
Abstract: In the face of anthropogenic climate change, species must acclimate, adapt, move, or die. Although some species are moving already, their ability to keep up with the faster changes expected in the future is unclear. 'Migration lag' is a particular concern with plants, because it could threaten both biodiversity and carbon storage. Plant movements are not realistically represented in models currently used to predict future vegetation and carbon-cycle feedbacks, so there is an urgent need to understand how much of a problem failure to track climate change is likely to be. Therefore, in this review, we compare how fast plants need to move with how fast they can move; that is, the velocity of climate change with the velocity of plant movement.

Journal ArticleDOI
TL;DR: In this paper, the authors measured the temperature response of microbial efficiency in soils amended with substrates varying in lability, and found that the efficiency with which soil microorganisms use organic matter is dependent on both temperature and substrate quality, with efficiency declining with increasing temperatures for more recalcitrant substrates.
Abstract: Soils are the largest repository of organic carbon in the terrestrial biosphere. Nevertheless, relatively little is known about the factors controlling the efficiency with which microbial communities utilize carbon, and its effect on soil–atmosphere CO2 exchange. Now research using long-term experimental plots suggests that climate warming could alter the decay dynamics of more stable organic-matter compounds with implications for carbon storage in soils and ultimately climate warming. Soils are the largest repository of organic carbon (C) in the terrestrial biosphere and represent an important source of carbon dioxide (CO2) to the atmosphere, releasing 60–75 Pg C annually through microbial decomposition of organic materials1,2. A primary control on soil CO2 flux is the efficiency with which the microbial community uses C. Despite its critical importance to soil–atmosphere CO2 exchange, relatively few studies have examined the factors controlling soil microbial efficiency. Here, we measured the temperature response of microbial efficiency in soils amended with substrates varying in lability. We also examined the temperature sensitivity of microbial efficiency in response to chronic soil warming in situ. We find that the efficiency with which soil microorganisms use organic matter is dependent on both temperature and substrate quality, with efficiency declining with increasing temperatures for more recalcitrant substrates. However, the utilization efficiency of a more recalcitrant substrate increased at higher temperatures in soils exposed to almost two decades of warming 5 °C above ambient. Our work suggests that climate warming could alter the decay dynamics of more stable organic matter compounds, thereby having a positive feedback to climate that is attenuated by a shift towards a more efficient microbial community in the longer term.

Journal ArticleDOI
TL;DR: For example, in the past decade, more than 30% of the heat has apparently penetrated below 700m depth that is traceable to changes in surface winds mainly over the Pacific in association with a switch to a negative phase of the Pacific Decadal Oscillation (PDO) in 1999.
Abstract: Global warming first became evident beyond the bounds of natural variability in the 1970s, but increases in global mean surface temperatures have stalled in the 2000s. Increases in atmospheric greenhouse gases, notably carbon dioxide, create an energy imbalance at the top-of-atmosphere (TOA) even as the planet warms to adjust to this imbalance, which is estimated to be 0.5–1 W m−2 over the 2000s. Annual global fluctuations in TOA energy of up to 0.2 W m−2 occur from natural variations in clouds, aerosols, and changes in the Sun. At times of major volcanic eruptions the effects can be much larger. Yet global mean surface temperatures fluctuate much more than these can account for. An energy imbalance is manifested not just as surface atmospheric or ground warming but also as melting sea and land ice, and heating of the oceans. More than 90% of the heat goes into the oceans and, with melting land ice, causes sea level to rise. For the past decade, more than 30% of the heat has apparently penetrated below 700 m depth that is traceable to changes in surface winds mainly over the Pacific in association with a switch to a negative phase of the Pacific Decadal Oscillation (PDO) in 1999. Surface warming was much more in evidence during the 1976–1998 positive phase of the PDO, suggesting that natural decadal variability modulates the rate of change of global surface temperatures while sea-level rise is more relentless. Global warming has not stopped; it is merely manifested in different ways.

Book
06 Aug 2013
TL;DR: In contrast to the decreasing sea ice coverage of the Arctic, in the Antarctic the sea ice cover has, on average, expanded since the late 1970s, with lesser contributions from the Weddell Sea and Indian Ocean as discussed by the authors.
Abstract: In sharp contrast to the decreasing sea ice coverage of the Arctic, in the Antarctic the sea ice cover has, on average, expanded since the late 1970s. More specifically, satellite passive-microwave data for the period November 1978 - December 2010 reveal an overall positive trend in ice extents of 17,100 +/- 2,300 square km/yr. Much of the increase, at 13,700 +/- 1,500 square km/yr, has occurred in the region of the Ross Sea, with lesser contributions from the Weddell Sea and Indian Ocean. One region, that of the Bellingshausen/Amundsen Seas, has, like the Arctic, instead experienced significant sea ice decreases, with an overall ice extent trend of -8,200 +/- 1,200 square km/yr. When examined through the annual cycle over the 32-year period 1979-2010, the Southern Hemisphere sea ice cover as a whole experienced positive ice extent trends in every month, ranging in magnitude from a low of 9,100 +/- 6,300 square km/yr in February to a high of 24,700 +/- 10,000 square km/yr in May. The Ross Sea and Indian Ocean also had positive trends in each month, while the Bellingshausen/Amundsen Seas had negative trends in each month, and the Weddell Sea and Western Pacific Ocean had a mixture of positive and negative trends. Comparing ice-area results to ice-extent results, in each case the ice-area trend has the same sign as the ice-extent trend, but differences in the magnitudes of the two trends identify regions with overall increasing ice concentrations and others with overall decreasing ice concentrations. The strong pattern of decreasing ice coverage in the Bellingshausen/Amundsen Seas region and increasing ice coverage in the Ross Sea region is suggestive of changes in atmospheric circulation. This is a key topic for future research.