scispace - formally typeset
Search or ask a question

Showing papers on "Growing season published in 2014"


Journal ArticleDOI
TL;DR: Statistical analyses of the experimental plots, and application of an ecophysiological model, suggest that mainly the rise in temperature and extended growing seasons contribute to increased growth acceleration, particularly on fertile sites.
Abstract: Forest ecosystems have been exposed to climate change for more than 100 years, whereas the consequences on forest growth remain elusive. Based on the oldest existing experimental forest plots in Central Europe, we show that, currently, the dominant tree species Norway spruce and European beech exhibit significantly faster tree growth (+32 to 77%), stand volume growth (+10 to 30%) and standing stock accumulation (+6 to 7%) than in 1960. Stands still follow similar general allometric rules, but proceed more rapidly through usual trajectories. As forest stands develop faster, tree numbers are currently 17-20% lower than in past same-aged stands. Self-thinning lines remain constant, while growth rates increase indicating the stock of resources have not changed, while growth velocity and turnover have altered. Statistical analyses of the experimental plots, and application of an ecophysiological model, suggest that mainly the rise in temperature and extended growing seasons contribute to increased growth acceleration, particularly on fertile sites.

444 citations


Journal ArticleDOI
TL;DR: It is found that although arctic and alpine ecosystems appear similar under historical climate conditions, climate change will lead to divergent responses, particularly in the spring and fall shoulder seasons, affecting community structure, biotic interactions, and biogeochemistry.
Abstract: Global climate change is already having significant impacts on arctic and alpine ecosystems, and ongoing increases in temperature and altered precipitation patterns will affect the strong seasonal patterns that characterize these temperature-limited systems. The length of the potential growing season in these tundra environments is increasing due to warmer temperatures and earlier spring snow melt. Here, we compare current and projected climate and ecological data from 20 Northern Hemisphere sites to identify how seasonal changes in the physical environment due to climate change will alter the seasonality of arctic and alpine ecosystems. We find that although arctic and alpine ecosystems appear similar under historical climate conditions, climate change will lead to divergent responses, particularly in the spring and fall shoulder seasons. As seasonality changes in the Arctic, plants will advance the timing of spring phenological events, which could increase plant nutrient uptake, production, and ecosystem carbon (C) gain. In alpine regions, photoperiod will constrain spring plant phenology, limiting the extent to which the growing season can lengthen, especially if decreased water availability from earlier snow melt and warmer summer temperatures lead to earlier senescence. The result could be a shorter growing season with decreased production and increased nutrient loss. These contrasting alpine and arctic ecosystem responses will have cascading effects on ecosystems, affecting community structure, biotic interactions, and biogeochemistry.

268 citations


Journal ArticleDOI
TL;DR: An evaluation of Pan-European LSP and its changes over the past 30 years is presented, using the longest continuous record of Normalized Difference Vegetation Index (NDVI) available to date in combination with a landscape-based aggregation scheme to test for temporal trends in activity of terrestrial vegetation.
Abstract: Land Surface Phenology (LSP) is the most direct representation of intra-annual dynamics of vegetated land surfaces as observed from satellite imagery. LSP plays a key role in characterizing land-surface fluxes, and is central to accurately parameterizing terrestrial biosphere–atmosphere interactions, as well as climate models. In this article, we present an evaluation of Pan-European LSP and its changes over the past 30 years, using the longest continuous record of Normalized Difference Vegetation Index (NDVI) available to date in combination with a landscape-based aggregation scheme. We used indicators of Start-Of-Season, End-Of-Season and Growing Season Length (SOS, EOS and GSL, respectively) for the period 1982–2011 to test for temporal trends in activity of terrestrial vegetation and their spatial distribution. We aggregated pixels into ecologically representative spatial units using the European Landscape Classification (LANMAP) and assessed the relative contribution of spring and autumn phenology. GSL increased significantly by 18–24 days decade-1 over 18–30% of the land area of Europe, depending on methodology. This trend varied extensively within and between climatic zones and landscape classes. The areas of greatest growing-season lengthening were the Continental and Boreal zones, with hotspots concentrated in southern Fennoscandia, Western Russia and pockets of continental Europe. For the Atlantic and Steppic zones, we found an average shortening of the growing season with hotspots in Western France, the Po valley, and around the Caspian Sea. In many zones, changes in the NDVI-derived end-of-season contributed more to the GSL trend than changes in spring green-up, resulting in asymmetric trends. This underlines the importance of investigating senescence and its underlying processes more closely as a driver of LSP and global change.

200 citations


Journal ArticleDOI
TL;DR: Modelling results support the findings that seasonal tree-ring δ(18) O variations are captured best when the week-to-week variations of the leaf water signal are suppressed, and suggest that climate signals in tree- ring δ-18 O variations should be strongest at temperate sites with humid conditions and precipitation maxima during the growing season.
Abstract: Summary � For accurate interpretation of oxygen isotopes in tree rings (d 18 O), it is necessary to disentangle the mechanisms underlying the variations in the tree’s internal water cycle and to understand the transfer of source versus leaf water d 18 O to phloem sugars and stem wood. � We studied the seasonal transfer of oxygen isotopes from precipitation and soil water through the xylem, needles and phloem to the tree rings of Larix decidua at two alpine sites in the L€ (Switzerland). Weekly resolved d 18 O records of precipitation, soil water, xylem and needle water, phloem organic matter and tree rings were developed. � Week-to-week variations in needle-water 18 O enrichment were strongly controlled by weather conditions during the growing season. These short-term variations were, however, not significantly fingerprinted in tree-ring d 18 O. Instead, seasonal trends in tree-ring d 18 O predominantly mirrored trends in the source water, including recent precipitation and soil water pools. Modelling results support these findings: seasonal tree-ring d 18 O variations are captured best when the week-to-week variations of the leaf water signal are suppressed. � Our results suggest that climate signals in tree-ring d 18 O variations should be strongest at temperate sites with humid conditions and precipitation maxima during the growing season.

176 citations


Journal ArticleDOI
12 Jun 2014-Nature
TL;DR: It is shown that experimental warming in a temperate grassland led to a longer growing season through earlier leaf emergence by the first species to leaf, often a grass, and constant or delayed senescence by other species that were the last to senesce, supporting the conceptual model.
Abstract: Observations of a longer growing season through earlier plant growth in temperate to polar regions have been thought to be a response to climate warming. However, data from experimental warming studies indicate that many species that initiate leaf growth and flowering earlier also reach seed maturation and senesce earlier, shortening their active and reproductive periods. A conceptual model to explain this apparent contradiction, and an analysis of the effect of elevated CO2--which can delay annual life cycle events--on changing season length, have not been tested. Here we show that experimental warming in a temperate grassland led to a longer growing season through earlier leaf emergence by the first species to leaf, often a grass, and constant or delayed senescence by other species that were the last to senesce, supporting the conceptual model. Elevated CO2 further extended growing, but not reproductive, season length in the warmed grassland by conserving water, which enabled most species to remain active longer. Our results suggest that a longer growing season, especially in years or biomes where water is a limiting factor, is not due to warming alone, but also to higher atmospheric CO2 concentrations that extend the active period of plant annual life cycles.

140 citations


Journal ArticleDOI
TL;DR: In this article, two-level N addition experiments were conducted to investigate the effects of N enrichment on microbial and root respiration in a grassland ecosystem on the Loess Plateau in northwestern China.
Abstract: Nitrogen (N) deposition to semiarid ecosystems is increasing globally, yet few studies have investigated the ecological consequences of N enrichment in these ecosystems. Furthermore, soil CO 2 flux – including plant root and microbial respiration – is a key feedback to ecosystem carbon (C) cycling that links ecosystem processes to climate, yet few studies have investigated the effects of N enrichment on belowground processes in water-limited ecosystems. In this study, we conducted two-level N addition experiments to investigate the effects of N enrichment on microbial and root respiration in a grassland ecosystem on the Loess Plateau in northwestern China. Two years of high N additions (9.2 g N m −2 y −1 ) significantly increased soil CO 2 flux, including both microbial and root respiration, particularly during the warm growing season. Low N additions (2.3 g N m −2 y −1 ) increased microbial respiration during the growing season only, but had no significant effects on root respiration. The annual temperature coefficients (Q 10 ) of soil respiration and microbial respiration ranged from 1.86 to 3.00 and 1.86 to 2.72 respectively, and there was a significant decrease in Q 10 between the control and the N treatments during the non-growing season but no difference was found during the growing season. Following nitrogen additions, elevated rates of root respiration were significantly and positively related to root N concentrations and biomass, while elevated rates of microbial respiration were related to soil microbial biomass C (SMBC). The microbial respiration tended to respond more sensitively to N addition, while the root respiration did not have similar response. The different mechanisms of N addition impacts on soil respiration and its components and their sensitivity to temperature identified in this study may facilitate the simulation and prediction of C cycling and storage in semiarid grasslands under future scenarios of global change.

137 citations


Journal ArticleDOI
TL;DR: In this article, the effect of different irrigation and nitrogen fertilizer levels on Zea mays L. (maize) on nitrate-nitrogen (NO3 − -N) leaching under lysimeter conditions was examined.

132 citations


Journal ArticleDOI
TL;DR: In this article, a continental-scale phenological analysis of African savannas and woodlands was performed to explore the influence of rainy season timing and duration on regional land surface phenology and ecosystem structure.
Abstract: This paper presents a continental-scale phenological analysis of African savannas and woodlands. We apply an array of synergistic vegetation and hydrological data records from satellite remote sensing and model simulations to explore the influence of rainy season timing and duration on regional land surface phenology and ecosystem structure. We find that (i) the rainy season onset precedes and is an effective predictor of the growing season onset in African grasslands. (ii) African woodlands generally have early green-up before rainy season onset and have a variable delayed senescence period after the rainy season, with this delay correlated nonlinearly with tree fraction. These woodland responses suggest their complex water use mechanisms (either from potential groundwater use by relatively deep roots or stem-water reserve) to maintain dry season activity. (iii) We empirically find that the rainy season length has strong nonlinear impacts on tree fractional cover in the annual rainfall range from 600 to 1800 mm/yr, which may lend some support to the previous modeling study that given the same amount of total rainfall to the tree fraction may first increase with the lengthening of rainy season until reaching an “optimal rainy season length,” after which tree fraction decreases with the further lengthening of rainy season. This nonlinear response is resulted from compound mechanisms of hydrological cycle, fire, and other factors. We conclude that African savannas and deciduous woodlands have distinctive responses in their phenology and ecosystem functioning to rainy season. Further research is needed to address interaction between groundwater and tropical woodland as well as to explicitly consider the ecological significance of rainy season length under climate change.

125 citations


Journal ArticleDOI
TL;DR: In this article, the authors examined whether growing season phenology can be remotely sensed from mean vegetation indices (VIs) derived from spring (Apr-May) and autumn (Sep.-Nov) observa- tions.

116 citations


Journal ArticleDOI
TL;DR: In summary, knock-on effects between seasons and trophic levels have consequences for plants and invertebrates, and the resultant ice layers act as barriers to foraging, triggering starvation of herbivores and their predators.
Abstract: The Earth is warming, especially in polar areas in which winter temperatures and precipitation are expected to increase. Despite a growing research focus on winter climatic change, the impacts on Arctic terrestrial ecosystems remain poorly understood. Snow acts as an insulator, and depth changes affect the enhancement of thermally dependent reactions, such as microbial activity, affecting soil nutrient composition, respiration, and winter gas efflux. Snow depth and spring temperatures influence snowmelt timing, determining the start of plant growth and forage availability. Delays in winter onset affect tundra carbon balance, faunal hibernation, and migration but are unlikely to lengthen the plant growing season. Mild periods in winter followed by a return to freezing have negative consequences for plants and invertebrates, and the resultant ice layers act as barriers to foraging, triggering starvation of herbivores and their predators. In summary, knock-on effects between seasons and trophic levels have i...

114 citations


Journal ArticleDOI
TL;DR: It is concluded that PN is primarily limited in drought-stressed G. hirsutum by decreased stomatal conductance, along with increases in respiratory and photorespiratory carbon losses, not inhibition or down-regulation of electron transport through photosystem II.

Journal ArticleDOI
TL;DR: In this paper, the response of processing tomato (Lycopersicon esculentum mill) to deficit irrigation (DI) to guide programs for the development of improved irrigation management practices for sub-humid zones was evaluated.

Journal ArticleDOI
TL;DR: In this article, the authors analyzed and characterized agro-climatic variability and changes and associated risks with respect to implications for rainfed crop production in the Central Rift Valley (CRV).
Abstract: Ethiopia is one of the countries most vulnerable to the impacts of climate variability and change on agriculture. The present study aims to understand and characterize agro-climatic variability and changes and associated risks with respect to implications for rainfed crop production in the Central Rift Valley (CRV). Temporal variability and extreme values of selected rainfall and temperature indices were analysed and trends were evaluated using Sen's slope estimator and Mann–Kendall trend test methods. Projected future changes in rainfall and temperature for the 2080s relative to the 1971–90 baseline period were determined based on four General Circulation Models (GCMs) and two emission scenarios (SRES, A2 and B1). The analysis for current climate showed that in the short rainy season (March–May), total mean rainfall varies spatially from 178 to 358 mm with a coefficient of variation (CV) of 32–50%. In the main (long) rainy season (June–September), total mean rainfall ranges between 420 and 680 mm with a CV of 15–40%. During the period 1977–2007, total rainfall decreased but not significantly. Also, there was a decrease in the number of rainy days associated with an increase (statistically not significant) in the intensity per rainfall event for the main rainy season, which can have implications for soil and nutrient losses through erosion and run-off. The reduced number of rainy days increased the length of intermediate dry spells by 0·8 days per decade, leading to crop moisture stress during the growing season. There was also a large inter-annual variability in the length of growing season, ranging from 76 to 239 days. The mean annual temperature exhibited a significant warming trend of 0·12–0·54 °C per decade. Projections from GCMs suggest that future annual rainfall will change by +10 to -40% by 2080. Rainfall will increase during November–December (outside the growing season), but will decline during the growing seasons. Also, the length of the growing season is expected to be reduced by 12–35%. The annual mean temperature is expected to increase in the range of 1·4–4·1 °C by 2080. The past and future climate trends, especially in terms of rainfall and its variability, pose major risks to rainfed agriculture. Specific adaptation strategies are needed for the CRV to cope with the risks, sustain farming and improve food security.

Journal ArticleDOI
TL;DR: In this paper, the authors used a 12-year time series (2001-2012) of eddy covariance measurements to investigate the long-term net ecosystem exchange (NEE) of carbon dioxide (CO2) and inter-annual variations in relation to abiotic drivers in a boreal fen in northern Sweden.
Abstract: This study uses a 12-year time series (2001-2012) of eddy covariance measurements to investigate the long-term net ecosystem exchange (NEE) of carbon dioxide (CO2) and inter-annual variations in relation to abiotic drivers in a boreal fen in northern Sweden. The peatland was a sink for atmospheric CO2 in each of the twelve study years with a 12-year average (+/- standard deviation) NEE of -58 +/- 21 g C m(-2) yr(-1). For ten out of twelve years, the cumulative annual NEE was within a range of -42 to -79 g C m(-2) yr(-1) suggesting a general state of resilience of NEE to moderate inter-annual climate variations. However, the annual NEE of -18 and -106 g C m(-2) yr(-1) in 2006 and 2008, respectively, diverged considerably from this common range. The lower annual CO2 uptake in 2006 was mainly due to late summer emissions related to an exceptional drop in water table level (WTL). A positive relationship (R-2 = 0.65) between pre-growing season (January to April) air temperature (Ta) and summer (June to July) gross ecosystem production (GEP) was observed. We suggest that enhanced GEP due to mild pre-growing season air temperature in combination with air temperature constraints on ecosystem respiration (ER) during the following cooler summer explained most of the greater net CO2 uptake in 2008. Differences in the annual and growing season means of other abiotic variables (e.g. radiation, vapor pressure deficit, precipitation) and growing season properties (i.e. start date, end date, length) were unable to explain the inter-annual variations of NEE. Overall, our findings suggest that this boreal fen acts as a persistent contemporary sink for atmospheric CO2 that is, however, susceptible to severe anomalies in WTL and pre-growing season air temperature associated with predicted changes in climate patterns for the boreal region. (Less)

Journal ArticleDOI
TL;DR: In this paper, the authors compared three temperature-related potential constraints across three study regions: (1) absolute minimum temperature within 100 years, (2) lowest temperatures during the period of bud-break, and (3) length and temperature of the growing season.
Abstract: Aim The aim of this study was to test, based on biological theory, which facet of temperature is most closely associated with the elevational and latitudinal low-temperature limits of seven European broad-leaved tree species. We compared three temperature-related potential constraints across three study regions: (1) absolute minimum temperature within 100 years; (2) lowest temperatures during the period of bud-break; and (3) length and temperature of the growing season. Location Western and Eastern Swiss Alps (1165–2160 m a.s.l.) and southern Sweden (57° N–59° N). Methods In situ temperature was recorded at the high-elevation and high-latitude limits of seven broad-leaved tree species and correlated with temperatures at the nearest weather stations, in order to reconstruct the temperature regime for the past 50 years. By applying generalized extreme value distribution theory, we estimated the lowest temperatures recurring during the life span of a tree. Results At their high-elevation limits, five out of the seven tree species experienced winter minimum temperatures considerably warmer than their known maximum freezing resistance in winter. For the bud-break period, potentially damaging temperatures occurred at both the elevational and the latitudinal limits and for all four species for which phenological data were available. Three out of five species for which a latitudinal replicate was available showed a similar length of growing season at their respective elevational and latitudinal limits. The mean temperature during the growing season was always warmer at a species’ latitudinal limit than at its elevational limit, and hence this variable does not bear general explanatory power for the range limit. Main conclusions Low-temperature extremes during bud-break are the most likely candidates for controlling the elevational and latitudinal limits of broad-leaved tree species. The absolute minimum temperature in winter and the mean temperature during the growing season are unlikely to constrain the cold limits of these species. Thus, the results call for the use of temperature data (extremes) during key stages of spring phenology when attempting to explain the low-temperature range limits and to predict the potential range shifts of deciduous tree species.

Journal ArticleDOI
TL;DR: In this article, the effects of the addition of a slow pyrolysis biochar (produced from olive-tree pruning) to a vertisol were studied in a field experiment during one wheat (Triticum durum L.) growing season.
Abstract: The effects of the addition of a slow pyrolysis biochar (produced from olive-tree prunings) to a vertisol were studied in a field experiment during one wheat (Triticum durum L.) growing season. The biochar addition did not significantly affect soil parameters such as pH, dissolved organic C and N, ammonium, nitrate or microbial biomass N. By contrast, biochar addition decreased soil compaction and increased the soil water-retention capacity and nutrient content (total N and the available contents of P, K, Mg, Cu and Zn). These favourable changes led to an increase in fine root proliferation (increasing specific root length and reducing root tissue density) and promoted crop development. As a result, the plants in biochar-treated plots showed higher relative growth and net assimilation rates, aboveground biomass and yield than those in control plots. Neither grain quality nor nutrient content were significantly affected by biochar addition. Our results suggest that the use of biochar as a soil amendment in agricultural soils can improve soil physical properties and increase fertility, favouring crop development under semiarid Mediterranean conditions.

Journal ArticleDOI
TL;DR: The hyphal length of fungi was correlated with EEA during the growing season while relative abundance of taxa within fungal phyla, in particular Chytridiomycota, was correlation with the EEA of beta-glucosidase, cellobiohydrolase, acid phosphatase and beta-xylosidases in the dry season.
Abstract: Soil extracellular enzymes are the proximal drivers of decomposition. However, the relative influence of climate, soil nutrients and edaphic factors compared to microbial community composition on extracellular enzyme activities (EEA) is poorly resolved. Determining the relative effects of these factors on soil EEA is critical since changes in climate and microbial species composition may have large impacts on decomposition. We measured EEA from five sites during the growing season in March and 17 sites during the dry season in July throughout southern California and simultaneously collected data on climate, soil nutrients, soil edaphic factors and fungal community composition. The concentration of carbon and nitrogen in the soil and soil pH were most related to hydrolytic EEA. Conversely, oxidative EEA was mostly related to mean annual precipitation. Fungal community composition was not correlated with EEA at the species, genus, family or order levels. The hyphal length of fungi was correlated with EEA during the growing season while relative abundance of taxa within fungal phyla, in particular Chytridiomycota, was correlated with the EEA of beta-glucosidase, cellobiohydrolase, acid phosphatase and beta-xylosidase in the dry season. Overall, in the dry season, 35.3 % of the variation in all enzyme activities was accounted for by abiotic variables, while fungal composition accounted for 27.4 %. Because global change is expected to alter precipitation regimes and increase nitrogen deposition in soils, EEA may be affected, with consequences for decomposition.

Journal ArticleDOI
TL;DR: Southern and Mediterranean ecosystems proved to be more resilient to droughts in terms of vegetation phenology and productivity developments, while Western Atlantic regions and Eastern Europe showed strong agglomerations of decreased productivity and shorter vegetation growing season length, indicating that these ecosystems did not buffer the effects of drought well.
Abstract: Drought affects more people than any other natural disaster but there is little understanding of how ecosystems react to droughts. This study jointly analyzed spatio-temporal changes of drought patterns with vegetation phenology and productivity changes between 1999 and 2010 in major European bioclimatic zones. The Standardized Precipitation and Evapotranspiration Index (SPEI) was used as drought indicator whereas changes in growing season length and vegetation productivity were assessed using remote sensing time-series of Normalized Difference Vegetation Index (NDVI). Drought spatio-temporal variability was analyzed using a Principal Component Analysis, leading to the identification of four major drought events between 1999 and 2010 in Europe. Correspondence Analysis showed that at the continental scale the productivity and phenology reacted differently to the identified drought events depending on ecosystem and land cover. Northern and Mediterranean ecosystems proved to be more resilient to droughts in terms of vegetation phenology and productivity developments. Western Atlantic regions and Eastern Europe showed strong agglomerations of decreased productivity and shorter vegetation growing season length, indicating that these ecosystems did not buffer the effects of drought well. In a climate change perspective, increase in drought frequency or intensity may result in larger impacts over these ecosystems, thus management and adaptation strategies should be strengthened in these areas of concerns.

Journal ArticleDOI
TL;DR: Seasonal and spatial controls on methylmercury (MeHg) production were examined in surface sediment in agricultural and non-agricultural wetlands in California's Central Valley, USA, suggesting that conditions that favored microbial sulfate reduction resulted in the highest calculated MeHg production potential rates.

Journal ArticleDOI
05 Feb 2014-PLOS ONE
TL;DR: The results suggest that the spring phenology of vegetation may have high temperature sensitivity in a warmer area, and it is important to consider temperature-sensitivity in assessing broad-scale phenological responses to climatic warming.
Abstract: In recent decades, satellite-derived start of vegetation growing season (SOS) has advanced in many northern temperate and boreal regions. Both the magnitude of temperature increase and the sensitivity of the greenness phenology to temperature–the phenological change per unit temperature–can contribute the advancement. To determine the temperature-sensitivity, we examined the satellite-derived SOS and the potentially effective pre-season temperature (Teff) from 1982 to 2008 for vegetated land between 30°N and 80°N. Earlier season vegetation types, i.e., the vegetation types with earlier SOSmean (mean SOS for 1982–2008), showed greater advancement of SOS during 1982–2008. The advancing rate of SOS against year was also greater in the vegetation with earlier SOSmean even the Teff increase was the same. These results suggest that the spring phenology of vegetation may have high temperature sensitivity in a warmer area. Therefore it is important to consider temperature-sensitivity in assessing broad-scale phenological responses to climatic warming. Further studies are needed to explore the mechanisms and ecological consequences of the temperature-sensitivity of start of growing season in a warming climate.

Journal ArticleDOI
Abstract: Summary While modelling efforts suggest that invasive species will track climate changes, empirical studies are few. A relevant and largely unaddressed research question is ‘How will the presence of exotic species interact with precipitation change to alter ecosystem structure and function?’ We studied the effects of changes in seasonal timing of precipitation on species composition and resource availability in a grassland community in Colorado, USA. We examined how seasonal precipitation patterns affect the abundance of historically present (native) and recently arrived (exotic) plant species, as well as soil moisture, nitrogen and above-ground biomass. Over 4 years, we applied four precipitation treatments based on climate model predictions for the study area: winter-wet/summer-ambient, winter-wet/summer-dry, winter-wet/summer-wet and winter-dry/summer-wet. Cover of exotic winter-active grasses was greater in winter-wet treatments than in control or winter-dry treatments. Cover of native warm-season grasses and forbs was greatest in the winter-dry/summer-wet treatment, and lowest in the winter-wet/summer-dry treatment. These results support the expectation that increased winter precipitation benefits new arrivals, whereas increased summer precipitation benefits later-growing native plants. Structural equation models showed that interactive effects of increased winter precipitation and increased cover of winter-active grasses reduced growing season soil water content and species diversity. In addition, the dominant winter-active species, Bromus tectorum, flowered and senesced earlier in plots receiving increased winter precipitation and reduced summer precipitation, suggesting that earlier growth of winter-active grasses decreases available soil resources and impacts later-growing native plants. Peak above-ground biomass was lowest in the treatment receiving reduced summer precipitation, but only in years with dry springs. Plant-available nitrogen in spring was lower in plots receiving supplemental winter precipitation, and highest in plots with reduced winter precipitation. Synthesis. Our results indicate that altering the seasonality of precipitation can have large direct effects on plant community composition and phenology, as well as significant indirect effects, mediated through exotic species, on plant-available resources and plant interactions.

Journal ArticleDOI
TL;DR: Although the authors observed variations in stoichiometry among PFTs at peak growing season, there was convergence of C:N:P:K to an average mass ratio of 445:14:1:9, indicating N and P co-limitation.
Abstract: Ombrotrophic bog peatlands are nutrient-deficient systems and important carbon (C) sinks yet the stoichiometry of nitrogen (N), phosphorus (P) and potassium (K), essential for plant growth and decomposition, has rarely been studied. We investigated the seasonal variation in C, N, P, and K concentrations and their stoichiometric ratios in photosynthetically active tissues of 14 species belonging to five plant functional types (PFTs) (mosses, deciduous trees/shrubs, evergreen shrubs, graminoids, and forb) at Mer Bleue bog, an ombrotrophic peatland in eastern Ontario, Canada. Although we observed variations in stoichiometry among PFTs at peak growing season, there was convergence of C:N:P:K to an average mass ratio of 445:14:1:9, indicating N and P co-limitation. Nitrogen, P, and K concentrations and stoichiometric ratios showed little seasonal variation in mosses, evergreens, and graminoids, but in forb and deciduous species were the largest in spring and decreased throughout the growing season. Variations in nutrient concentrations and stoichiometric ratios among PFTs were greater than seasonal variation within PFTs. Plants exhibit N and P co-limitation and adapt to extremely low nutrient availability by maintaining small nutrient concentrations in photosynthetically active tissues, especially for evergreen shrubs and Sphagnum mosses. Despite strong seasonal variations in nutrient availabilities, few species show strong seasonal variation in nutrient concentrations, suggesting a strong stoichiometric homeostasis at Mer Bleue bog.

Journal ArticleDOI
TL;DR: The dataset demonstrates that vegetation uptake is the dominant ecosystem COS flux in the peak growing season, providing support of COS as an independent tracer of terrestrial photosynthesis and the observation that ecosystems may become a COS source at high temperature needs to be considered in global modeling studies.
Abstract: Net photosynthesis is the largest single flux in the global carbon cycle, but controls over its variability are poorly understood because there is no direct way of measuring it at the ecosystem scale. We report observations of ecosystem carbonyl sulfide (COS) and CO2 fluxes that resolve key gaps in an emerging framework for using concurrent COS and CO2 measurements to quantify terrestrial gross primary productivity. At a wheat field in Oklahoma we found that in the peak growing season the flux-weighted leaf relative uptake of COS and CO2 during photosynthesis was 1.3, at the lower end of values from laboratory studies, and varied systematically with light. Due to nocturnal stomatal conductance, COS uptake by vegetation continued at night, contributing a large fraction (29%) of daily net ecosystem COS fluxes. In comparison, the contribution of soil fluxes was small (1–6%) during the peak growing season. Upland soils are usually considered sinks of COS. In contrast, the well-aerated soil at the site switched from COS uptake to emissions at a soil temperature of around 15 °C. We observed COS production from the roots of wheat and other species and COS uptake by root-free soil up to a soil temperature of around 25 °C. Our dataset demonstrates that vegetation uptake is the dominant ecosystem COS flux in the peak growing season, providing support of COS as an independent tracer of terrestrial photosynthesis. However, the observation that ecosystems may become a COS source at high temperature needs to be considered in global modeling studies.

Journal ArticleDOI
TL;DR: In this article, the authors determined rainfall pattern; temporal distribution, onset, cessation and length of growing seasons in the tropical sub-humid and a semi-arid regions with contrasting rainfall patterns and agricultural potential in central highlands of Kenya.

Journal ArticleDOI
TL;DR: Giant reed appeared to be particularly suited to semi-arid Mediterranean environments, showing high yields even in absence of agro-input supply.

Journal ArticleDOI
TL;DR: In this article, field experiments were conducted in arid Southern Xinjiang, Northwest China, for 3-years to evaluate sustainable irrigation regimes for cotton, which involved mulched drip irrigation during the growing season and flood irrigation afterward.
Abstract: Field experiments were conducted in arid Southern Xinjiang, Northwest China, for 3 years to evaluate sustainable irrigation regimes for cotton. The experiments involved mulched drip irrigation during the growing season and flood irrigation afterward. The drip irrigation experiments included control experiments, experiments with deficit irrigation during one crop growth stage, and alternative irrigation schemes in which freshwater was used during one growth stage and relatively saline water in the others. The average cotton yield over 3 years varied between 3,575 and 5,095 kg/ha, and the irrigation water productivity between 0.91 and 1.16 kg/m3. Crop sensitivities to water stress during the different growth stages ranged from early flowering-belling (most sensitive) > seedling > budding > late flowering-belling (least sensitive), while sensitivities to salt stress ranged from late flowering-belling > budding > seedling > early flowering-belling. Although mulched drip irrigation during the growing season caused an increase in salinity in the root zone, flood irrigation after harvesting leached the accumulated salts to below background levels. Numerical simulations, based on the 3-year experiments and extended by another 20 years, suggest that mulched drip irrigation using alternatively fresh and brackish water during the growing season and flood irrigation with freshwater after harvesting is a sustainable irrigation practice that should not lead to soil salinization.

Journal ArticleDOI
TL;DR: The crop yields estimated by the downscaling-assimilation framework were compared with those provided by the Companhia Nacional de Asastecimento (CONAB) and Instituto Brasileiro de Geografia e Estatistica (IBGE).
Abstract: This study investigates the effects of agricultural drought on crop yields, through integration of crop growth models and remote sensing observations. The soil moisture (SM) product from SM and Ocean Salinity (SMOS) mission obtained at 25 km was downscaled to a spatial resolution of 1 km, compatible with the crop models. The downscaling algorithm is based upon information theoretic learning and uses data-driven probabilistic relationships between high-resolution remotely sensed products that are sensitive to SM and in situ SM. The downscaled SM values are assimilated in the crop model using an Ensemble Kalman filter-based augmented state-vector technique that estimates states and parameters simultaneously. The downscaling and assimilation framework are implemented for predominantly agricultural region of the lower La-Plata Basin (LPB) in Brazil during two growing seasons. This rain-fed region was affected by agricultural drought in the second season, indicated by markedly lower precipitation compared to the first growing season. The downscaled SM was compared with the in situ SM at a validation site and the root mean square difference (RMSD) was 0.045 m 3 /m 3 . The crop yields estimated by the downscaling-assimilation framework were compared with those provided by the Companhia Nacional de Asastecimento (CONAB) and Instituto Brasileiro de Geografia e Estatistica (IBGE). The assimilated yields are improved during both seasons with increased improvement during the second season that was affected by agricultural drought. The differences between the assimilated and observed crop yields were 16.8% during the first growing season and 4.37% during the second season.

Journal ArticleDOI
TL;DR: In this paper, the influence of meteorological conditions on wheat yields was derived from statistical yield data which were detrended by 9-year smoothing averages to remove the effects of technological improvements on wheat yield over time.
Abstract: Rainfall, temperature, and solar radiation are important climate factors, which determine crop growth, development and yield from instantaneous to decadal scales. We propose to identify year patterns of climate impact on yield on the basis of rain and non-rain weather. There are inter-related impacts of climatic factors on crop production within a specific pattern. Historical wheat yield data in Queensland during 1889-2004 were used. The influence of meteorological conditions on wheat yields was derived from statistical yield data which were detrended by 9-year-smoothing averages to remove the effects of technological improvements on wheat yields over time. Climate affects crop growth and development differently over different growth stages. Therefore, we considered the climate effects at both vegetative and reproductive stages (before and after flowering date, respectively) on yield. Cluster analysis was employed to identify the year patterns of climate impact. Five patterns were significantly classified. Precipitation during the vegetative stage was the dominant and beneficial factor for wheat yields while increasing maximum temperature had a negative influence. Crop yields were strongly dependent on solar radiation under normal rainfall conditions. As the effect of rainfall on soil water is relatively long-lasting, its beneficial effect in vegetative stage was higher than its effect during the reproductive stage. The Agricultural Production Systems sIMulator (APSIM) was evaluated using long-term historical data to determine whether the model could reasonably simulate effects of climate factors for each year pattern. The model provided good estimates of wheat yield when conditions resulted in medium yield levels, however, in extremely low or high yield years, corresponding to extremely low or high precipitation in the vegetative stage, the model tended to underestimate or overestimate. Under high growing season precipitation, simulations responded more favourably to reproductive stage rainfall than measured yields. 2013 Royal Meteorological Society.

Journal ArticleDOI
TL;DR: In this paper, the influence of biodiversity on stand water use efficiency in boreal forests between wet and dry years was compared. And the results confirmed that the physiological response of boreal forest ecosystems to changing soil water conditions is influenced by species interactions and that during dry growing seasons, species interactions in mixed stands can lead to lower soil moisture availability.
Abstract: In mixed forests, interactions among species influence ecosystem functioning but environmental conditions also play an important role in shaping relationships between biodiversity and ecosystem functioning. In the context of climate change, the carbon and water balance in pure versus mixed forest stands may be differentially influenced by changing soil water availability. To test this hypothesis, we compared the influence of biodiversity on stand water use efficiency (WUES) in boreal forests between wet and dry years. We assessed the carbon isotope composition (δ 13C) of tree rings in Betula pendula, Pinus sylvestris, and Picea abies growing in pure versus mixed stands. In addition, we tested whether differences in WUES affected patterns of stand basal area increment (BAIS). No biodiversity effect was found for stand δ 13C (δ 13CS) during the wet year. However, there was a significant increase in δ 13CS between the wet and the dry year and a significant effect of biodiversity on δ 13CS in the dry year. The increase in δ 13CS in mixed stands was associated with both selection and complementarity effects. Although BAIS decreased significantly in the dry year, changes in δ 13CS did not translate into variations in BAIS along the biodiversity gradient. Our results confirmed that the physiological response of boreal forest ecosystems to changing soil water conditions is influenced by species interactions and that during dry growing seasons, species interactions in mixed stands can lead to lower soil moisture availability. This illustrates that biodiversity effects can also be negative in mixed stands in the sense that soil resources can be more intensively exhausted. Overall, our results confirm that in boreal forests, the biodiversity–ecosystem functioning relationship depends on local environmental conditions.

Journal ArticleDOI
TL;DR: In this paper, three levels of nitrogen treatments (control, no nitrogen addition; low-N, 20 kg N −1 ǫ, high-N, 50 kg N−ǫ,ǫ −1 1ǫ ) were established in a 21-yr-old larch plantation in North China.