scispace - formally typeset
Search or ask a question

Showing papers on "In vitro published in 2018"


Journal ArticleDOI
TL;DR: It is suggested that THP-1 be regarded as a simplified model of human macrophages when investigating relatively straightforward biological processes, such as polarization and its functional implications, but not as an alternative source in more comprehensive immunopharmacology and drug screening programs.
Abstract: Human peripheral-blood monocytes are used as an established in vitro system for generating macrophages. For several reasons, monocytic cell lines such as THP-1 have been considered as a possible alternative. In view of their distinct developmental origins and phenotypic attributes, we set out to assess the extent to which human monocyte-derived macrophages (MDMs) and phorbol-12-myristate-13-acetate (PMA)-differentiated THP-1 cells were overlapping across a variety of responses to activating stimuli. Resting (M0) macrophages were polarized toward M1 or M2 phenotypes by 48-h incubation with LPS (1 μg/ml) and IFN-γ (10 ng/ml) or with IL-4 (20 ng/ml) and IL-13 (5 ng/ml), respectively. At the end of stimulation, MDMs displayed more pronounced changes in marker gene expression than THP-1. Upon assaying an array of 41 cytokines, chemokines and growth factors in conditioned media (CM) using the Luminex technology, secretion of 29 out of the 41 proteins was affected by polarized activation. While in 12 of them THP-1 and MDM showed comparable trends, for the remaining 17 proteins their responses to activating stimuli did markedly differ. Quantitative comparison for selected analytes confirmed this pattern. In terms of phenotypic activation markers, measured by flow cytometry, M1 response was similar but the established MDM M2 marker CD163 was undetectable in THP-1 cells. In a beads-based assay, MDM activation did not induce significant changes, whereas M2 activation of THP-1 decreased phagocytic activity compared to M0 and M1. In further biological activity tests, both MDM and THP-1 CM failed to affect proliferation of mouse myogenic progenitors, whereas they both reduced adipogenic differentiation of mouse fibro-adipogenic progenitor cells (M2 to a lesser extent than M1 and M0). Finally, migration of human umbilical vein endothelial cells was enhanced by CM irrespective of cell type and activation state except for M0 CM from MDMs. In summary, PMA-differentiated THP-1 macrophages did not entirely reproduce the response spectrum of primary MDMs to activating stimuli. We suggest that THP-1 be regarded as a simplified model of human macrophages when investigating relatively straightforward biological processes, such as polarization and its functional implications, but not as an alternative source in more comprehensive immunopharmacology and drug screening programs.

146 citations


Journal ArticleDOI
TL;DR: In vivo and in vitro studies revealed that a Cd exposure at environmentally relevant concentrations results in biphasic Cd dose-thyroid response relationships, and further studies needed to elucidate the issue and improve the understanding of Cd-mediated effects on the thyroid gland.
Abstract: Humans are exposed to a significant number of chemicals that are suspected to produce disturbances in hormone homeostasis. Hence, in recent decades, there has been a growing interest in endocrine disruptive chemicals. One of the alleged thyroid disrupting substances is cadmium (Cd), a ubiquitous toxic metal shown to act as a thyroid disruptor and carcinogen in both animals and humans. Multiple PubMed searches with core keywords were performed to identify and evaluate appropriate studies which revealed literature suggesting evidence for the link between exposure to Cd and histological and metabolic changes in the thyroid gland. Furthermore, Cd influence on thyroid homeostasis at the peripheral level has also been hypothesized. Both in vivo and in vitro studies revealed that a Cd exposure at environmentally relevant concentrations results in biphasic Cd dose-thyroid response relationships. Development of thyroid tumors following exposure to Cd has been studied mainly using in vitro methodologies. In the thyroid, Cd has been shown to activate or stimulate the activity of various factors, leading to increased cell proliferation and a reduction in normal apoptotic activity. Evidence establishing the association between Cd and thyroid disruption remains ambiguous, with further studies needed to elucidate the issue and improve our understanding of Cd-mediated effects on the thyroid gland.

123 citations


Journal ArticleDOI
TL;DR: The identification and characterization of a novel and selective PRMT5 inhibitor with potent in vitro and in vivo activity is described and compound 1 showed antitumor activity in mouse xenografts when dosed orally and can serve as an excellent probe molecule for understanding the biological function ofPRMT5 in normal and cancer cells.
Abstract: Protein arginine methyltransferase 5 (PRMT5) is a type II arginine methyltransferase that catalyzes the formation of symmetric dimethylarginine in a number of nuclear and cytoplasmic proteins. Although the cellular functions of PRMT5 have not been fully unraveled, it has been implicated in a number of cellular processes like RNA processing, signal transduction, and transcriptional regulation. PRMT5 is ubiquitously expressed in most tissues and its expression has been shown to be elevated in several cancers including breast cancer, gastric cancer, glioblastoma, and lymphoma. Here, we describe the identification and characterization of a novel and selective PRMT5 inhibitor with potent in vitro and in vivo activity. Compound 1 (also called LLY-283) inhibited PRMT5 enzymatic activity in vitro and in cells with IC50 of 22 ± 3 and 25 ± 1 nM, respectively, while its diastereomer, compound 2 (also called LLY-284), was much less active. Compound 1 also showed antitumor activity in mouse xenografts when dosed orall...

111 citations


Journal ArticleDOI
TL;DR: It is demonstrated that BMP9 and BMP10 can heterodimerize and that thisheterodimer is responsible for most of the biological BMP activity found in plasma.

78 citations


Journal ArticleDOI
TL;DR: These assays can be used to characterize the DPP-IV inhibitory activity of food-derived molecules more accurately than in vitro biochemical tests and also considers their effects on the circulating form of D PP-IV, correlated to metabolic diseases.
Abstract: Recent investigations have focused on food-derived peptides as novel natural inhibitors of dipeptidyl peptidase IV (DPP-IV), a new target for diabetes. This study aimed to optimize fast, sensitive, and cost-effective DPP-IV assays in situ on human intestinal Caco-2 cells and ex vivo on human serum. Both assays were applied to investigate the inhibitory activity of soy and lupin peptides. The best conditions for in situ DPP-IV activity in Caco-2 cells were obtained using 2-day cells and 50 µM Gly-Pro-AMC. Sitagliptin, used as reference inhibitor, showed a dose-dependent response with a 50% inhibition concentration (IC50) of 0.6 µM. A lower IC50 (0.2 µM) was obtained for sitagliptin on human serum incubated with the substrate for 24 h. Both assays were applied to assess the activity of Lup1 (LTFPGSAED) and Soy1 (IAVPTGVA) on DPP-IV. Lup1 and Soy1 inhibited DPP-IV in situ, with IC50 values of of 207.5 and 223.2 µM, respectively, and maintained their inhibitory activity ex vivo on circulating DPP-IV with a slightly lower potency. These assays can be used to characterize the DPP-IV inhibitory activity of food-derived molecules more accurately than in vitro biochemical tests. This combined approach also considers their effects on the circulating form of DPP-IV, correlated to metabolic diseases.

67 citations


Journal ArticleDOI
TL;DR: It is demonstrated that acid titration at low pH is very well adapted to the monitoring of pepsin activity and proved to be very worthy to study protein hydrolysis during in vitro gastric digestions.

57 citations


Journal ArticleDOI
TL;DR: The role of galectin-9 isoforms in endothelial cell function and angiogenesis is explored using the chicken chorioallantoic membrane (CAM) assay and both monovalent gal-9 CRDs displayed opposite effects compared to gal- 9M on proliferation and migration.
Abstract: Galectin-9 consists of two peptide-linked carbohydrate recognition domains (CRDs), but alternative splicing and proteolytic processing can give rise to multiple galectin-9 isoforms. Some of these consist of a single CRD and can exert different functions in cell biology. Here, we explored the role of these galectin-9 isoforms in endothelial cell function and angiogenesis. For this, we compared the effects of the two separate CRDs (Gal-9N and Gal-9C) with the tandem repeat galectin-9M on endothelial cell proliferation, migration, sprouting and tube formation in vitro as well as on angiogenesis in vivo using the chicken chorioallantoic membrane (CAM) assay. Galectin-9 isoforms significantly affected proliferation in quiescent endothelial cells and migration in activated endothelial cells. Interestingly, both monovalent gal-9 CRDs displayed opposite effects compared to gal-9M on proliferation and migration. Sprouting was significantly inhibited by gal-9C, while all isoforms appeared to stimulate tube formation. Angiogenesis in vivo was hampered by all three isoforms with predominant effects on vessel length. In general, the isoforms induced only subtle concentration-dependent effects in vitro as well as in vivo. Collectively, the effects of different galectin-9 isoforms in endothelial cell biology depend on the cellular activation status. While opposing effects can be observed on a cellular level in vitro, all galectin-9 isoforms hamper angiogenesis in vivo. This warrants further investigation of the regulatory mechanisms that underlie the diverging roles of galectin-9 isoforms in endothelial cell biology since this could provide therapeutic opportunities.

56 citations


Journal ArticleDOI
TL;DR: It is demonstrated that B-1a cells infiltrate into the brain and contribute to oligodendrogenesis and myelination by promoting OPC proliferation via IgM–Fcα/μR signaling.
Abstract: During brain development, the immune system mediates neurogenesis, gliogenesis and synapse formation. However, it remains unclear whether peripheral lymphocytes contribute to brain development. Here we identified the subtypes of lymphocytes that are present in neonatal mouse brains and investigated their functions. We found that B-1a cells, a subtype of B cells, were abundant in the neonatal mouse brain and infiltrated into the brain in a CXCL13–CXCR5-dependent manner. B-1a cells promoted the proliferation of oligodendrocyte-precursor cells (OPCs) in vitro, and depletion of B-1a cells from developing brains resulted in a reduction of numbers of OPCs and mature oligodendrocytes. Furthermore, neutralizing Fcα/μR, the receptor for the Fc region of IgM secreted by B-1a cells, inhibited OPC proliferation and reduced the proportion of myelinated axons in neonatal mouse brains. Our results demonstrate that B-1a cells infiltrate into the brain and contribute to oligodendrogenesis and myelination by promoting OPC proliferation via IgM–Fcα/μR signaling.

54 citations


Journal ArticleDOI
TL;DR: In this study, a bacterial strain exhibiting high selenite tolerance and reduction capacity was isolated from the gut of Monochamus alternatus larvae and identified as Alcaligenes faecalis Se03, which has the potential to be an eco-friendly candidate for theBioremediation of selenium-contaminated soil/water and a bacterial catalyst for the biogenesis of SeNPs.
Abstract: In this study, a bacterial strain exhibiting high selenite (Na2SeO3) tolerance and reduction capacity was isolated from the gut of Monochamus alternatus larvae and identified as Alcaligenes faecalis Se03. The isolate exhibited extreme tolerance to selenite (up to 120 mM) when grown aerobically. In the liquid culture medium, it was capable of reducing nearly 100% of 1.0 and 5.0 mM Na2SeO3 within 24 and 42 h, respectively, leading to the formation of selenium nanoparticles (SeNPs). Electron microscopy and energy dispersive X-ray analysis demonstrated that A. faecalis Se03 produced spherical electron-dense SeNPs with an average hydrodynamic diameter of 273.8 ± 16.9 nm, localized mainly in the extracellular space. In vitro selenite reduction activity and real-time PCR indicated that proteins such as sulfite reductase and thioredoxin reductase present in the cytoplasm were likely to be involved in selenite reduction and the SeNPs synthesis process in the presence of NADPH or NADH as electron donors. Finally, using Fourier-transform infrared spectrometry, protein and lipid residues were detected on the surface of the biogenic SeNPs. Based on these observations, A. faecalis Se03 has the potential to be an eco-friendly candidate for the bioremediation of selenium-contaminated soil/water and a bacterial catalyst for the biogenesis of SeNPs.

49 citations



Journal ArticleDOI
TL;DR: It is found that the treatment of the parent MCF-7 cells with exosomes from the resistant cells within 14 days lead to the partial resistance of the MCF -7 cells to antiestrogen drugs.
Abstract: Exosomes are small vesicles which are produced by the cells and released into the surrounding space. They can transfer biomolecules into recipient cells. The main goal of the work was to study the exosome involvement in the cell transfer of hormonal resistance. The experiments were performed on in vitro cultured estrogen-dependent MCF-7 breast cancer cells and MCF-7 sublines resistant to SERM tamoxifen and/or biguanide metformin, which exerts its anti-proliferative effect, at least in a part, via the suppression of estrogen machinery. The exosomes were purified by differential ultracentrifugation, cell response to tamoxifen was determined by MTT test, and the level and activity of signaling proteins were determined by Western blot and reporter analysis. We found that the treatment of the parent MCF-7 cells with exosomes from the resistant cells within 14 days lead to the partial resistance of the MCF-7 cells to antiestrogen drugs. The primary resistant cells and the cells with the exosome-induced resistance were characterized with these common features: decrease in ERα activity and parallel activation of Akt and AP-1, NF-κB, and SNAIL1 transcriptional factors. In general, we evaluate the established results as the evidence of the possible exosome involvement in the transferring of the hormone/metformin resistance in breast cancer cells.

Journal ArticleDOI
TL;DR: The overall preclinical profile of AB-423 supports its further evaluation for safety, pharmacokinetics, and antiviral activity in patients with chronic hepatitis B and in vitro dual combination studies with anti-HBV agents resulted in additive to synergistic antiviral Activity.
Abstract: AB-423 is a member of the sulfamoylbenzamide (SBA) class of hepatitis B virus (HBV) capsid inhibitors in phase 1 clinical trials. In cell culture models, AB-423 showed potent inhibition of HBV replication (50% effective concentration [EC50] = 0.08 to 0.27 μM; EC90 = 0.33 to 1.32 μM) with no significant cytotoxicity (50% cytotoxic concentration > 10 μM). Addition of 40% human serum resulted in a 5-fold increase in the EC50s. AB-423 inhibited HBV genotypes A through D and nucleos(t)ide-resistant variants in vitro Treatment of HepDES19 cells with AB-423 resulted in capsid particles devoid of encapsidated pregenomic RNA and relaxed circular DNA (rcDNA), indicating that it is a class II capsid inhibitor. In a de novo infection model, AB-423 prevented the conversion of encapsidated rcDNA to covalently closed circular DNA, presumably by interfering with the capsid uncoating process. Molecular docking of AB-423 into crystal structures of heteroaryldihydropyrimidines and an SBA and biochemical studies suggest that AB-423 likely also binds to the dimer-dimer interface of core protein. In vitro dual combination studies with AB-423 and anti-HBV agents, such as nucleos(t)ide analogs, RNA interference agents, or interferon alpha, resulted in additive to synergistic antiviral activity. Pharmacokinetic studies with AB-423 in CD-1 mice showed significant systemic exposures and higher levels of accumulation in the liver. A 7-day twice-daily administration of AB-423 in a hydrodynamic injection mouse model of HBV infection resulted in a dose-dependent reduction in serum HBV DNA levels, and combination with entecavir or ARB-1467 resulted in a trend toward antiviral activity greater than that of either agent alone, consistent with the results of the in vitro combination studies. The overall preclinical profile of AB-423 supports its further evaluation for safety, pharmacokinetics, and antiviral activity in patients with chronic hepatitis B.

Journal ArticleDOI
TL;DR: Both S1 and S2 extracts possess in vitro ROS scavenging activity toward 3T3-L1 murine fibroblasts and Hek-293 human embryonic kidney epithelial cells and antiproliferative activity towards human breast MCF-7 and uterine HeLa cancer cells.
Abstract: Pomegranate peels are the major by-products of the processing of pomegranate juice. Scientific research studies have shown that pomegranate peels are an extraordinary source of bioactive compounds, most of which can be converted into value added products. From this point of view, the present study was carried out with the aim of providing a solid basis for the use of whole pomegranate peels (Akko variety) as a source of nutraceutical compounds, such as β-glucans. Moreover, acetone (S1) and methanolic (S2) extracts, obtained in the preliminary stage of the β-glucan isolation procedure, have been tested for their antioxidant and antitumor activities. The total phenolic content and phenolic profile of S1 and S2 were determined. S1 and S2 exhibited a significant DPPH scavenging activity, with an IC50 value for S1 1.5-fold lower than that for the standard Trolox. Both S1 and S2 extracts possess in vitro ROS scavenging activity toward 3T3-L1 murine fibroblasts and Hek-293 human embryonic kidney epithelial cells and antiproliferative activity towards human breast MCF-7 and uterine HeLa cancer cells.

Journal ArticleDOI
TL;DR: Melatonin has been reported to enhance significant protective effects in different in vitro and in vivo studies either through enhancement or inhibition of the autophagy process.

Journal ArticleDOI
TL;DR: In vivo study confirmed that MEG3 over‐expression could improve hepatic function of HIR mice, and markedly decreased the expression of serum ALT and AST, which could add the understanding of the molecular mechanisms in HIR injury.
Abstract: To investigate the function of MEG3 in hepatic ischemia-reperfusion (HIR) progress, involving its association with the level of miR-34a during hypoxia-induced hypoxia re-oxygenation (H/R) in vitro. HIR mice model in vivo was established. MEG3, miR-34a expression, along with Nrf2 mRNA and protein level were detected in tissues and cells. Serum biochemical parameters (ALT and AST) were assessed in vivo. A potential binding region between MEG3 and miR34a was confirmed by luciferase assays. Hepatic cells HL7702 were subjected to hypoxia treatment in vitro for functional studies, including TUNEL-positive cells detection and ROS analysis. MEG3, Nrf2 expression was significantly down-regulated in infarction lesion from HIR mice, as opposed to increased miR-34a production, while similar results were also observed in H/R HL7702 cells, while the above effects were reversed by MEG3 over-expression. By using bioinformatics study and RNA pull down combined with luciferase assays, we demonstrated that MEG3 functioned as a competing endogenous RNA (ceRNA) for miR-34a, and there was reciprocal repression between MEG3 and miR-34a in an Argonaute 2-dependent manner. Functional studies demonstrated that MEG3 showed positive regulation on TUNEL-positive cells and ROS level. Further in vivo study confirmed that MEG3 over-expression could improve hepatic function of HIR mice, and markedly decreased the expression of serum ALT and AST. MEG3 protected hepatocytes from HIR injury through down-regulating miR-34a expression, which could add our understanding of the molecular mechanisms in HIR injury.

Journal ArticleDOI
TL;DR: Results revealed that ABL-2 exerts an effective anti-tumor effect by dynamically adjusting the REDOX balance and improving the immunoregulatory activity of H22 tumor-bearing mice.

Journal ArticleDOI
TL;DR: The use of targeted metabolomics followed by in silico studies to virtually screen identified metabolites on selected protein targets, in combination with the use of the candidate metabolites in cellular models, are proposed as the methods of choice for elucidating the molecular mechanisms of these compounds.
Abstract: Background Hibiscus sabdariffa, Lippia citriodora, Rosmarinus officinalis and Olea europaea, are rich in bioactive compounds that represent most of the phenolic compounds' families and have exhibited potential benefits in human health. These plants have been used in folk medicine for their potential therapeutic properties in human chronic diseases. Recent evidence leads to postulate that polyphenols may account for such effects. Nevertheless, the compounds or metabolites that are responsible for reaching the molecular targets are unknown. Objective data based on studies directly using complex extracts on cellular models, without considering metabolic aspects, have limited applicability. In contrast, studies exploring the absorption process, metabolites in the blood circulation and tissues have become essential to identify the intracellular final effectors that are responsible for extracts bioactivity. Once the cellular metabolites are identified using high-resolution mass spectrometry, docking techniques suppose a unique tool for virtually screening a large number of compounds on selected targets in order to elucidate their potential mechanisms. Results we provide an updated overview of the in vitro and in vivo studies on the toxicity, absorption, permeability, pharmacokinetics and cellular metabolism of bioactive compounds derived from the abovementioned plants to identify the potential compounds that are responsible for the observed health effects. Conclusion we propose the use of targeted metabolomics followed by in silico studies to virtually screen identified metabolites on selected protein targets, in combination with the use of the candidate metabolites in cellular models, as the methods of choice for elucidating the molecular mechanisms of these compounds.

Journal ArticleDOI
TL;DR: The physicochemical properties of 4f may be conducive to CNS permeability, suggesting that this compound may be a possible candidate for the treatment of glioblastoma.
Abstract: We report the synthesis and metabolic and biological evaluation of a series of 17 novel heterocyclic derivatives of isocombretastatin-A4 (iso-CA-4) and their structure-activity relationships. Among these derivatives, the most active compound, 4f, inhibited the growth of a panel of seven cancer cell lines with an IC50 in the low nanomolar range. In addition, 4f showed interesting activity against CA-4-resistant colon-carcinoma cells and multidrug-resistant leukemia cells. It also induced G2/M cell-cycle arrest. Structural data indicated binding of 4f to the colchicine site of tubulin, likely preventing the curved-to-straight tubulin structural changes that occur during microtubule assembly. Also, 4f disrupted the blood-vessel-like assembly formed by human umbilical-vein endothelial cells in vitro, suggesting its function as a vascular-disrupting agent. An in vitro metabolism study of 4f showed its high human-microsomal stability in comparison with that of iso-CA-4. The physicochemical properties of 4f may be conducive to CNS permeability, suggesting that this compound may be a possible candidate for the treatment of glioblastoma.

Journal ArticleDOI
TL;DR: The angiogenic capacity of c‐kit+ cells was aborted in vivo indicated by reduced NG2, α‐SMA, CD31, and vWF levels, and the transdifferentiation capacity into the endothelial lineage, pericytes, and cardiomyocytes were reduced through the inhibition of related genes.
Abstract: Murine c-kit+ cardiac cells were isolated and enriched by magnetic activated cell sorting technique. c-kit+ cells viability and colony-forming activity were evaluated by MTT and clonogenic assay. c-kit+ cells were exposed to endothelial, pericyte, and cardiomyocyte induction media containing 30mM glucose for 7 days. We monitored the level of endothelial (VE-cadherin, CD31, and vWF), pericyte (NG2 , α-SMA, and PDGFR-β), and cardiomyocyte markers (cTnT) using flow cytometry, real-time Polymerase Chain Reaction (PCR), and Enzyme-Linked Immunosorbent Assay (ELISA) analyses. Ultrastructural changes were studied by transmission electron microscopy (TEM) in cells treated with 5-Azacytidine and 30mM glucose. Matrigel plug assay was performed to determine the angio/cardiogenic property of c-kit+ cells in a diabetic mouse model. Glucose of 30mM decreased c-kit+ cells viability and clonogenicity (P < 0.05). The transdifferentiation capacity of c-kit+ cells into the endothelial lineage, pericytes, and cardiomyocytes were reduced through the inhibition of related genes (P < 0.05). TEM analysis revealed cardiomyocyte differentiation rate in c-kit+ cells coincided with an increased intracellular lipid accumulation and reduced number of mitochondria. Similar to in vitro condition, the angiogenic capacity of c-kit+ cells was aborted in vivo indicated by reduced NG2 , α-SMA, CD31, and vWF levels. High glucose condition reduces the angio/cardiogenic capacity of cardiac c-kit+ cells in vitro and in vivo. SIGNIFICANCE OF THE STUDY: High glucose condition seen in diabetes mellitus could affect the regenerative potential of cardiac tissue. The current experiment showed that the exposure of murine cardiac progenitor cells (CD117+ cells) to condition containing 30mM glucose could decrease the differentiation properties into endothelial cells, pericytes, and mature cardiomyocytes in vitro and in vivo. Our finding confirmed that the angiogenic/cardiogenic potential cardiac progenitor cells decrease under treatment with high glucose content as seen in the diabetic condition.

Journal ArticleDOI
TL;DR: It is found that GRP78 and FAT10 were significantly overexpressed in HCC tissues compare with adjacent non‐cancerous tissues, and a positive correlation was found between their expression and associated proliferation characteristics.

Journal ArticleDOI
TL;DR: Fab’ (antigen-binding fragments cut from TMAB)-modified NPs (Fab′-NPs) with curcumin (Cur) as a model drug for more effective targeting of human epidermal growth factor receptor 2 (HER2/ErbB2/Neu), which is overexpressed on breast cancer cells is prepared.
Abstract: Introduction Nanoparticles (NPs) modified with bio-ligands represent a promising strategy for active targeted drug delivery to tumour. However, many targeted ligands, such as trastuzumab (TMAB), have high molecular weight, limiting their application for targeting. In this study, we prepared Fab' (antigen-binding fragments cut from TMAB)-modified NPs (Fab'-NPs) with curcumin (Cur) as a model drug for more effective targeting of human epidermal growth factor receptor 2 (HER2/ErbB2/Neu), which is overexpressed on breast cancer cells. Material and methods The release kinetics was conducted by dialysis bags. The ability to kill HER2-overexpressing BT-474 cells of Fab'-Cur-NPs compared with TMAB-Cur-NPs was conducted by cytotoxicity experiments. Qualitative and quantitative cell uptake studies using coumarin-6 (fluorescent probe)-loaded NPs were performed by fluorescence microscopy and flow cytometry. Pharmacokinetics and biodistribution experiments in vivo were assessed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Results The release kinetics showed that both Fab'-Cur-NPs and TMAB-Cur-NPs provided continuous, slow release of curcumin for 72 h, with no significant difference. In vitro cytotoxicity experiments showed that Fab'-Cur-NPs manifested prominent ability to kill HER2-overexpressing BT-474 cells compared with TMAB-Cur-NPs. Qualitative and quantitative cell uptake studies indicated that the accumulation of Fab'-NPs was greater than that of TMAB-NPs in BT-474 (HER2+) cells; However, there was no significant difference in MDA-MB-231 (HER2-) cells. Pharmacokinetics and biodistribution experiments in vivo demonstrated that the half-life (t1/2) and area under the blood concentration-time curve (AUC0-t) of Fab'-Cur-NPs increased 5.30-fold and 1.76-fold relative to those of TMAB-Cur-NPs, respectively. Furthermore, the tumor accumulation of Fab'-Cur-NPs was higher than that of TMAB-Cur-NPs. Conclusion Fab' fragment has greater capacity than the intact antibody to achieve tumor targeting through NP-based delivery.

Journal ArticleDOI
TL;DR: In vitro and in vivo results suggest that 23a, 25a, and 25d may be promising microtubule-stabilizing agents and can be used as a promising lead for the development of new antitumor agents.
Abstract: Twenty-eight novel selenium-containing 4-anilinoquinazoline derivatives were designed, synthesized, and evaluated as antiproliferative agents. Most of them had significant in vitro activities, particularly for compounds 23a, 25a, and 25d, which also exhibited the most potent antitumor activities against cisplatin-resistant cell lines and the doxorubicin-resistant cell lines, good selectivity toward normal cells, and obvious inhibitory effect on migration of A549 cell lines. Further mechanistic studies revealed that 23a, 25a, and 25d induce G2/M phase arrest and apoptosis in A549 cells, which was associated with a collapse of the mitochondrial membrane potential, alterations in the expression of some cell cycle-related and apoptosis-related proteins, and increasing the intracellular ROS level. Finally, compounds 23a, 25a, and 25d also effectively inhibited the tumor growth in the A549 xenograft model without obvious hints of toxicity. Taken together, these in vitro and in vivo results suggest that 23a, 25a...

Journal ArticleDOI
TL;DR: The data show that measuring CD83 and CD86 expression and IL-12p40 and TNF-α production in DC in vitro may provide an efficient way to screen NP for potential adjuvant activity, and rutile NP may be preferred over anatase NP, especially when inhalation exposure can be expected during production or application of the product.
Abstract: The use of engineered nanoparticles (NP) is widespread and still increasing. There is a great need to assess their safety. Newly engineered NP enter the market in a large variety; therefore safety evaluation should preferably be in a high-throughput fashion. In vitro screening is suitable for this purpose. TiO 2 NP exist in a large variety (crystal structure, coating and size), but information on their relative toxicities is scarce. TiO 2 NP may be inhaled by workers in e.g. paint production and application. In mice, inhalation of TiO 2 NP increases allergic reactions. Dendritic cells (DC) form an important part of the lung immune system, and are essential in adjuvant activity. The present study aimed to establish the effect of a variety of TiO 2 NP on DC maturation in vitro. Two NP of different crystal structure but similar in size, uncoated and from the same supplier, were evaluated for their adjuvant activity in vivo. Immature DC were differentiated in vitro from human peripheral blood monocytes. Exposure effects of a series of fourteen TiO 2 NP on cell viability, CD83 and CD86 expression, and IL-12p40 and TNF-α production were measured. BALB/c mice were intranasally sensitized with ovalbumin (OVA) alone, OVA plus anatase TiO 2 NP, OVA plus rutile TiO 2 NP, and OVA plus Carbon Black (CB; positive control). The mice were intranasally challenged with OVA. OVA-specific IgE and IgG1 in serum, cellular inflammation in bronchoalveolar lavage fluid (BALF) and IL-4 and IL-5 production in draining bronchial lymph nodes were evaluated. All NP dispersions contained NP aggregates. The anatase NP and anatase/rutile mixture NP induced a higher CD83 and CD86 expression and a higher IL-12p40 production in vitro than the rutile NP (including coated rutile NP and a rutile NP of a 10-fold larger primary diameter). OVA-specific serum IgE and IgG1 were increased by anatase NP, rutile NP, and CB, in the order rutile

Journal ArticleDOI
TL;DR: Two new compounds with a prenylated diphenyl ether structure were isolated from the marine algal-derived endophytic fungus Aspergillus tennesseensis, along with seven known compounds that exhibited antimicrobial and cytotoxic activities.
Abstract: Considerable attention has been paid to marine derived endophytic fungi, owing to their capacity to produce novel secondary metabolites with potent bioactivities. In this study, two new compounds with a prenylated diphenyl ether structure-diorcinol L (1) and (R)-diorcinol B (2)-were isolated from the marine algal-derived endophytic fungus Aspergillus tennesseensis, along with seven known compounds: (S)-diorcinol B (3), 9-acetyldiorcinol B (4), diorcinol C (5), diorcinol D (6), diorcinol E (7), diorcinol J (8), and a dihydrobenzofuran derivative 9. Their structures were elucidated by extensive NMR spectroscopy studies. Compound 2 represents the first example of an R-configuration in the prenylated moiety. All these isolated compounds were examined for antimicrobial and cytotoxic activities. Compounds 1⁻9 exhibited antimicrobial activities against some human- and plant-pathogenic microbes with MIC values ranging from 2 to 64 μg/mL. Moreover, compound 9 displayed considerable inhibitory activity against the THP-1 cell line in vitro, with an IC50 value of 7.0 μg/mL.

Journal ArticleDOI
TL;DR: 1,8-Cineole is a potential candidate for skin carcinoma, which is possible by regulating the p53 apoptotic signaling pathway, and is investigated upon to understand the mechanism that caused cancer cell death.

Journal ArticleDOI
TL;DR: It is suggested that Celtis choseniana methanol extract exerted in vitro and in vivo anti-inflammatory activity in LPS-stimulated macrophages and mouse models of acute inflammatory diseases and ameliorated the morphological finding of peritonitis and gastritis in the mouse disease models.
Abstract: Celtis choseniana is the traditional plant used at Korea as a herbal medicine to ameliorate inflammatory responses. Although Celtis choseniana has been traditionally used as a herbal medicine at Korea, no systemic research has been conducted on its anti-inflammatory activity. Therefore, the present study explored an anti-inflammatory effect and its underlying molecular mechanism using Celtis choseniana methanol extract (Cc-ME) in macrophage-mediated inflammatory responses. In vitro anti-inflammatory activity of Cc-ME was evaluated using RAW264.7 cells and peritoneal macrophages stimulated by lipopolysaccharide (LPS), pam3CSK4 (Pam3), or poly(I:C). In vivo anti-inflammatory activity of Cc-ME was investigated using acute inflammatory disease mouse models, such as LPS-induced peritonitis and HCl/EtOH-induced gastritis. The molecular mechanism of Cc-ME-mediated anti-inflammatory activity was examined by Western blot analysis and immunoprecipitation using whole cell and nuclear fraction prepared from the LPS-stimulated RAW264.7 cells and HEK293 cells. Cc-ME inhibited NO production and mRNA expression of inducible nitric oxide synthase (iNOS), cyclooxygenase (COX-2), and tumor necrosis factor-alpha (TNF-α) in the RAW264.7 cells and peritoneal macrophages induced by LPS, pam3, or poly(I:C) without cytotoxicity. High-performance liquid chromatography (HPLC) analysis showed that Cc-ME contained anti-inflammatory flavonoids quercetin, luteolin, and kaempferol. Among those, the content of luteolin, which showed an inhibitory effect on NO production, was highest. Cc-ME suppressed the NF-κB signaling pathway by targeting Src and interrupting molecular interactions between Src and p85, its downstream kinase. Moreover, Cc-ME ameliorated the morphological finding of peritonitis and gastritis in the mouse disease models. Therefore, these results suggest that Cc-ME exerted in vitro and in vivo anti-inflammatory activity in LPS-stimulated macrophages and mouse models of acute inflammatory diseases. This anti-inflammatory activity of Cc-ME was dominantly mediated by targeting Src in NF-κB signaling pathway during macrophage-mediated inflammatory responses.

Journal ArticleDOI
TL;DR: The results highlight the immunosuppressive activity of the huiPS-MSCs on human T-cell stimulation with a concomitant generation of human Treg cells in vivo, and may favor the development of new tools and strategies based on the use of hui PS cells and their derivatives for the induction of immune tolerance.
Abstract: Despite mesenchymal stromal cells (MSCs) are considered as a promising source of cells to modulate immune functions on cells from innate and adaptive immune systems, their clinical use remains restricted (few number, limited in vitro expansion, absence of a full phenotypic characterization, few insights on their in vivo fate). Standardized MSCs derived in vitro from human-induced pluripotent stem (huIPS) cells, remediating part of these issues, are considered as well as a valuable tool for therapeutic approaches, but their functions remained to be fully characterized. We generated multipotent MSCs derived from huiPS cells (huiPS-MSCs), and focusing on their immunosuppressive activity, we showed that human T-cell activation in coculture with huiPS-MSCs was significantly reduced. We also observed the generation of functional CD4+ FoxP3+ regulatory T (Treg) cells. Further tested in vivo in a model of human T-cell expansion in immune-deficient NSG mice, huiPS-MSCs immunosuppressive activity prevented the circulation and the accumulation of activated human T cells. Intracytoplasmic labeling of cytokines produced by the recovered T cells showed reduced percentages of human-differentiated T cells producing Th1 inflammatory cytokines. By contrast, T cells producing IL-10 and FoxP3+-Treg cells, absent in non-treated animals, were detected in huiPS-MSCs treated mice. For the first time, these results highlight the immunosuppressive activity of the huiPS-MSCs on human T-cell stimulation with a concomitant generation of human Treg cells in vivo. They may favor the development of new tools and strategies based on the use of huiPS cells and their derivatives for the induction of immune tolerance.

Journal ArticleDOI
TL;DR: Evidence is provided that CD103+ LDCs are more potent in promoting Th1/Th17 immunity to chlamydial lung infection than CD11bhi L DCs.
Abstract: Recent studies suggest differential roles for CD103+ and CD11bhi lung dendritic cells (LDCs) in host defense against viral and bacterial infections. In this study, we examined the contribution of these LDC subsets in protective immunity to chlamydial lung infection using a Chlamydia muridarum mouse infection model. We found that CD103+ LDCs showed higher expression of costimulatory molecules (CD40, CD80 and CD86) and increased production of cytokines (IL-12p70, IL-10, IL-23 and IL-6) compared with CD11bhi LDCs, but the expression of programmed death-ligand 1 (PD-L1) was similar between the two subsets. More importantly, we found, in adoptive transfer experiments, that the mice receiving CD103+ LDCs from Chlamydia-infected mice exhibited better protection than the recipients of CD11bhi LDCs, which was associated with more robust Th1/Th17 cytokine responses. In addition, in vitro experiments showed that CD103+ LDCs induced stronger IFN-γ and IL-17 responses, when cocutured with chlamydial antigen-primed CD4+ T cells, than CD11bhi LDCs. Furthermore, the blockade of PD1 in the culture of CD4+ T cells with either CD103+ or CD11bhi LDCs enhanced production of IFN-γ and IL-17. In conclusion, our data provide direct evidence that CD103+ LDCs are more potent in promoting Th1/Th17 immunity to chlamydial lung infection than CD11bhi LDCs.

Journal ArticleDOI
TL;DR: It is demonstrated that the aforementioned incorporation of HA and CS enables long‐term stability of the nanosystems in both liquid and lyophilised states, which is a remarkable property that can aid in their transfer to industry.

Journal ArticleDOI
TL;DR: The excellent in vitro efficacy and specificity of an adaptor-controlled CAR-T therapy to target both tumor cells and tumor-associated macrophages in NSCLCs were validated.
Abstract: Our goal is to develop a switch-controlled approach to enable better control of reactivity and safety of chimeric antigen receptor (CAR)-T therapy for non-small-cell lung cancer (NSCLC). Lentiviral transduction was performed to generate anti-FITC CAR-T cells and target cells stably expressing either isoform of the folate receptor. Colorimetric-based cytotoxic assay, enzyme-linked immunosorbent assay, and multiparametric flow cytometry analysis were used to evaluate the specificity and activity of CAR-T cells in vitro. Human primary T cells stably expressing the fully human anti-FITC CAR were generated. Anti-FITC CAR-T cells displayed antigen-specific and folate-FTIC dependent reactivity against engineered A549-FRα and THP-1-FRβ. The selective activation and proliferation of anti-FITC CAR-T cells in vitro stringently relied on the co-existence of folate-FITC and FR- expressing target cells and was dose-titratable with the folate-FITC switch. The excellent in vitro efficacy and specificity of an adaptor-controlled CAR-T therapy to target both tumor cells and tumor-associated macrophages in NSCLCs were validated.