scispace - formally typeset
Search or ask a question

Showing papers on "Membrane published in 2018"


Journal ArticleDOI
TL;DR: This work has shown that a high lipid diversity is universal in eukaryotes and is seen from the scale of a membrane leaflet to that of a whole organism, highlighting its importance and suggesting that membrane lipids fulfil many functions.
Abstract: Cellular membranes are formed from a chemically diverse set of lipids present in various amounts and proportions. A high lipid diversity is universal in eukaryotes and is seen from the scale of a membrane leaflet to that of a whole organism, highlighting its importance and suggesting that membrane lipids fulfil many functions. Indeed, alterations of membrane lipid homeostasis are linked to various diseases. While many of their functions remain unknown, interdisciplinary approaches have begun to reveal novel functions of lipids and their interactions. We are beginning to understand why even small changes in lipid structures and in composition can have profound effects on crucial biological functions.

1,012 citations


Journal ArticleDOI
Tan Zhe1, Shengfu Chen1, Xinsheng Peng1, Zhang Lin1, Congjie Gao1 
04 May 2018-Science
TL;DR: This work uses a facile route based on interfacial polymerization to generate Turing-type polyamide membranes for water purification that exhibit excellent water-salt separation performance that surpasses the upper-bound line of traditional desalination membranes.
Abstract: The emergence of Turing structures is of fundamental importance, and designing these structures and developing their applications have practical effects in chemistry and biology. We use a facile route based on interfacial polymerization to generate Turing-type polyamide membranes for water purification. Manipulation of shapes by control of reaction conditions enabled the creation of membranes with bubble or tube structures. These membranes exhibit excellent water-salt separation performance that surpasses the upper-bound line of traditional desalination membranes. Furthermore, we show the existence of high water permeability sites in the Turing structures, where water transport through the membranes is enhanced.

896 citations


Journal ArticleDOI
TL;DR: A high-performance nitrogen-coordinated single Co atom catalyst is derived from Co-doped metal-organic frameworks (MOFs) through a one-step thermal activation and achieves respectable activity and stability for the oxygen reduction reaction (ORR) in challenging acidic media.
Abstract: Due to the Fenton reaction, the presence of Fe and peroxide in electrodes generates free radicals causing serious degradation of the organic ionomer and the membrane. Pt-free and Fe-free cathode catalysts therefore are urgently needed for durable and inexpensive proton exchange membrane fuel cells (PEMFCs). Herein, a high-performance nitrogen-coordinated single Co atom catalyst is derived from Co-doped metal-organic frameworks (MOFs) through a one-step thermal activation. Aberration-corrected electron microscopy combined with X-ray absorption spectroscopy virtually verifies the CoN4 coordination at an atomic level in the catalysts. Through investigating effects of Co doping contents and thermal activation temperature, an atomically Co site dispersed catalyst with optimal chemical and structural properties has achieved respectable activity and stability for the oxygen reduction reaction (ORR) in challenging acidic media (e.g., half-wave potential of 0.80 V vs reversible hydrogen electrode (RHE). The performance is comparable to Fe-based catalysts and 60 mV lower than Pt/C -60 μg Pt cm-2 ). Fuel cell tests confirm that catalyst activity and stability can translate to high-performance cathodes in PEMFCs. The remarkably enhanced ORR performance is attributed to the presence of well-dispersed CoN4 active sites embedded in 3D porous MOF-derived carbon particles, omitting any inactive Co aggregates.

821 citations


Journal ArticleDOI
TL;DR: L lamellar stacked MXene membranes with aligned and regular subnanometer channels are designed, taking advantage of the abundant surface-terminating groups on the MXene nanosheets, which exhibit excellent gas separation performance with H2 permeability >2200 Barrer and H2/CO2 selectivity >160, superior to the state-of-the-art membranes.
Abstract: Molecular sieving membranes with sufficient and uniform nanochannels that break the permeability-selectivity trade-off are desirable for energy-efficient gas separation, and the arising two-dimensional (2D) materials provide new routes for membrane development. However, for 2D lamellar membranes, disordered interlayer nanochannels for mass transport are usually formed between randomly stacked neighboring nanosheets, which is obstructive for highly efficient separation. Therefore, manufacturing lamellar membranes with highly ordered nanochannel structures for fast and precise molecular sieving is still challenging. Here, we report on lamellar stacked MXene membranes with aligned and regular subnanometer channels, taking advantage of the abundant surface-terminating groups on the MXene nanosheets, which exhibit excellent gas separation performance with H2 permeability >2200 Barrer and H2/CO2 selectivity >160, superior to the state-of-the-art membranes. The results of molecular dynamics simulations quantitatively support the experiments, confirming the subnanometer interlayer spacing between the neighboring MXene nanosheets as molecular sieving channels for gas separation. Two-dimensional materials show great potential for membrane technologies, but their disordered channels hinder their molecular sieving performance. Here, Wang, Gogotsi and colleagues design a MXene membrane with ordered nanochannels that exhibits an excellent H2/CO2 gas separation performance.

731 citations


Journal ArticleDOI
TL;DR: It is concluded that synthetic methods have evolved rapidly and development of fundamental knowledge on the many complex phenomena occurring in the adaptive membrane bulk and solution-interface environments is not sufficiently established, and much effort is required to combine experimental, theoretical, and simulation data for a more comprehensive and coherent understanding of these phenomena.

636 citations


Journal ArticleDOI
TL;DR: This work opened a pathway for investigating the mechanical properties of monolayers and bilayers of other MXenes and extends the already broad range of MXenes’ applications to structural composites, protective coatings, nanoresonators, and membranes that require materials with exceptional mechanical properties.
Abstract: Two-dimensional (2D) transition metal carbides and nitrides, known as MXenes, are a large class of materials that are finding numerous applications ranging from energy storage and electromagnetic interference shielding to water purification and antibacterial coatings. Yet, despite the fact that more than 20 different MXenes have been synthesized, the mechanical properties of a MXene monolayer have not been experimentally studied. We measured the elastic properties of monolayers and bilayers of the most important MXene material to date, Ti3C2T x (T x stands for surface termination). We developed a method for preparing well-strained membranes of Ti3C2T x monolayers and bilayers, and performed their nanoindentation with the tip of an atomic force microscope to record the force-displacement curves. The effective Young's modulus of a single layer of Ti3C2T x was found to be 0.33 ± 0.03 TPa, which is the highest among the mean values reported in nanoindentation experiments for other solution-processed 2D materials, including graphene oxide. This work opens a pathway for investigating the mechanical properties of monolayers and bilayers of other MXenes and extends the already broad range of MXenes' applications to structural composites, protective coatings, nanoresonators, and membranes that require materials with exceptional mechanical properties.

548 citations


Journal ArticleDOI
TL;DR: The fabrication of a TFC NF membrane with a crumpled polyamide (PA) layer via interfacial polymerization on a single-walled carbon nanotubes/polyether sulfone composite support loaded with nanoparticles as a sacrificial templating material is reported, yielding an overall desalination performance superior to state-of-the-art NF membranes reported so far.
Abstract: Nanofiltration (NF) membranes with ultrahigh permeance and high rejection are highly beneficial for efficient desalination and wastewater treatment. Improving water permeance while maintaining the high rejection of state-of-the-art thin film composite (TFC) NF membranes remains a great challenge. Herein, we report the fabrication of a TFC NF membrane with a crumpled polyamide (PA) layer via interfacial polymerization on a single-walled carbon nanotubes/polyether sulfone composite support loaded with nanoparticles as a sacrificial templating material, using metal-organic framework nanoparticles (ZIF-8) as an example. The nanoparticles, which can be removed by water dissolution after interfacial polymerization, facilitate the formation of a rough PA active layer with crumpled nanostructure. The NF membrane obtained thereby exhibits high permeance up to 53.5 l m−2h−1 bar−1 with a rejection above 95% for Na2SO4, yielding an overall desalination performance superior to state-of-the-art NF membranes reported so far. Our work provides a simple avenue to fabricate advanced PA NF membranes with outstanding performance. Nanofiltration membranes are important for water desalination technologies, but designing membranes that achieve both high permeance and high salt rejection remains challenging. Here, the authors use sacrificial nanoparticles in the membrane fabrication process, leading to crumpled structures with ultrahigh permeance.

516 citations


Journal ArticleDOI
TL;DR: The continuous two-dimensional imine-linked COF-LZU1 membrane with a thickness of only 400 nm was prepared on alumina tubes by in-situ solvothermal synthesis and shows excellent water permeance and outstanding water stability, rendering it an interesting system for water purification.
Abstract: Covalent organic frameworks (COFs) are attractive candidates for advanced water-treatment membranes owing to their high porosity and well-organized channel structures. Herein, the continuous two-dimensional imine-linked COF-LZU1 membrane with a thickness of only 400 nm was prepared on alumina tubes by in situ solvothermal synthesis. The membrane shows excellent water permeance (ca. 760 L m-2 h-1 MPa-1 ) and favorable rejection rates exceeding 90 % for water-soluble dyes larger than 1.2 nm. The water permeance through the COF-LZU1 membrane is much higher than that of most membranes with similar rejection rates. Long-time operation demonstrates the outstanding stability of the COF-LZU1 membrane. As the membrane has no selectivity for hydrated salt ions (selectivity <12 %), it is also suitable for the purification of dye products from saline solutions. The excellent performance and the outstanding water stability render the COF-LZU1 membrane an interesting system for water purification.

448 citations


Journal ArticleDOI
TL;DR: A broad review is carried out on wetting incidence in membrane distillation processes and describes the wetting mechanisms, wetting causes, and wetting detection methods, as well as hydrophobicity measurements of MD membranes.

446 citations


Journal ArticleDOI
TL;DR: A number of reproducible and effective methods to produce β-PVDF-based morphologies/structures in the form of dense films, porous films, 3D scaffolds, patterned structures, fibers and spheres are presented.
Abstract: Poly(vinylidene fluoride) (PVDF) and its copolymers are the polymers with the highest dielectric constants and electroactive responses, including piezoelectric, pyroelectric and ferroelectric effects. This semicrystalline polymer can crystallize in five different forms, each related to a different chain conformation. Of these different phases, the β phase is the one with the highest dipolar moment and the highest piezoelectric response; therefore, it is the most interesting for a diverse range of applications. Thus, a variety of processing methods have been developed to induce the formation of the polymer β phase. In addition, PVDF has the advantage of being easily processable, flexible and low-cost. In this protocol, we present a number of reproducible and effective methods to produce β-PVDF-based morphologies/structures in the form of dense films, porous films, 3D scaffolds, patterned structures, fibers and spheres. These structures can be fabricated by different processing techniques, including doctor blade, spin coating, printing technologies, non-solvent-induced phase separation (NIPS), temperature-induced phase separation (TIPS), solvent-casting particulate leaching, solvent-casting using a 3D nylon template, freeze extraction with a 3D poly(vinyl alcohol) (PVA) template, replica molding, and electrospinning or electrospray, with the fabrication method depending on the desired characteristics of the structure. The developed electroactive structures have shown potential to be used in a wide range of applications, including the formation of sensors and actuators, in biomedicine, for energy generation and storage, and as filtration membranes.

427 citations


Journal ArticleDOI
TL;DR: In this paper, a review summarizes comprehensive recent studies on the removal of contaminants of emerging concern (CECs) by forward osmosis (FO), reverse Osmosis(RO), nanofiltration (NF), and ultrafiltration (UF) membrane treatments, and describes important information on the applications of FO, RO, NF, and UF membranes in water and wastewater (WW) treatment.

Journal ArticleDOI
TL;DR: A new type of a two-dimensional layered-stacking COF-COF composite membrane in bilayer geometry synthesized on a porous support by successively regulating the growth of imine-based COf-LZU1 and azine- based ACOF-1 layers via a temperature-swing solvothermal approach is demonstrated.
Abstract: Covalent organic frameworks (COFs) have been proposed as alternative candidates for molecular sieving membranes due to their chemical stability. However, developing COF membranes with narrowed apertures close to the size of common gas molecules is a crucial task for selective gas separation. Herein, we demonstrate a new type of a two-dimensional layered-stacking COF–COF composite membrane in bilayer geometry synthesized on a porous support by successively regulating the growth of imine-based COF-LZU1 and azine-based ACOF-1 layers via a temperature-swing solvothermal approach. The resultant COF-LZU1–ACOF-1 bilayer membrane has much higher separation selectivity for H2/CO2, H2/N2, and H2/CH4 gas mixtures than the individual COF-LZU1 and ACOF-1 membranes due to the formation of interlaced pore networks, and the overall performance surpasses the Robeson upper bounds. The COF-LZU1–ACOF-1 bilayer membrane also shows high thermal and long-time stabilities.

Journal ArticleDOI
TL;DR: Efficient incorporation of engineered submicrometre-sized metal–organic framework (MOF) crystals into polymers to form hybrid materials that successfully translate the excellent molecular sieving properties of face-centred cubic (fcu)-MOFs into the resultant membranes are reported on.
Abstract: Membrane-based separations can improve energy efficiency and reduce the environmental impacts associated with traditional approaches. Nevertheless, many challenges must be overcome to design membranes that can replace conventional gas separation processes. Here, we report on the incorporation of engineered submicrometre-sized metal–organic framework (MOF) crystals into polymers to form hybrid materials that successfully translate the excellent molecular sieving properties of face-centred cubic (fcu)-MOFs into the resultant membranes. We demonstrate, simultaneously, exceptionally enhanced separation performance in hybrid membranes for two challenging and economically important applications: the removal of CO2 and H2S from natural gas and the separation of butane isomers. Notably, the membrane molecular sieving properties demonstrate that the deliberately regulated and contracted MOF pore-aperture size can discriminate between molecular pairs. The improved performance results from precise control of the linkers delimiting the triangular window, which is the sole entrance to the fcu-MOF pore. This rational-design hybrid approach provides a general toolbox for enhancing the transport properties of advanced membranes bearing molecular sieve fillers with sub-nanometre-sized pore-apertures. Sub-micrometre MOF particles are incorporated into polymers to form mixed matrix membranes. Molecular sieving enables performance far beyond current limits for two applications, butane isomer separation and combined CO2/H2S removal from natural gas.

Journal ArticleDOI
TL;DR: A class of reduced GO membranes with enlarged interlayer distance fabricated by using theanine amino acid and tannic acid as reducing agent and cross-linker with remarkably high permeability and stability in aqueous solution is reported.
Abstract: Increasing fresh water demand for drinking and agriculture is one of the grand challenges of our age. Graphene oxide (GO) membranes have shown a great potential for desalination and water purification. However, it is challenging to further improve the water permeability without sacrificing the separation efficiency, and the GO membranes are easily delaminated in aqueous solutions within few hours. Here, we report a class of reduced GO membranes with enlarged interlayer distance fabricated by using theanine amino acid and tannic acid as reducing agent and cross-linker. Such membranes show water permeance over 10,000 L m-2 h-1 bar-1, which is 10-1000 times higher than those of previously reported GO-based membranes and commercial membranes, and good separation efficiency, e.g., rhodamine B and methylene blue rejection of ~100%. Moreover, they show no damage or delamination in water, acid, and basic solutions even after months.


Journal ArticleDOI
TL;DR: The novel Ag@MXene composite membrane with variable AgNP loadings achieved favorable rejection to organic foulants like bovine serum albumin (BSA) and methyl green (MG) in comparison to other reported membranes and makes Ag@ MXene layered nanosheets attractive candidates towards the development of nanofiltration membranes for water purification and biomedical applications.
Abstract: Low flux and fouling are critical issues in membrane based separation processes. Here we report a two-dimensional (2D) MXene (Ti3C2Tx) modified with Ag nanoparticles (Ag@MXene) as a promising alternative for ultrafast water purification membrane applications. The novel Ag@MXene composite membrane with variable AgNP loadings (between 0–35%) was produced by self-reduction of silver nitrate on the surface of MXene sheets in solution, where the MXene acted simultaneously as a membrane forming material and a reducing agent. The most suitable membrane, 21% Ag@MXene with 470 nm thickness and 2.1 nm average pore size, exhibited an outstanding water flux (∼420 L m−2 h−1 bar−1) compared to the pristine MXene membrane (∼118 L m−2 h−1 bar−1) under the same experimental conditions. The 21% Ag@MXene membrane demonstrated high rejection efficiency for organic molecules with excellent flux recovery. Moreover, the 21% Ag@MXene composite membrane demonstrated more than 99% E. coli growth inhibition, while the MXene membrane exhibited only ∼60% bacteria growth inhibition compared to the control hydrophilic polyvinylidene difluoride (PVDF) based membrane. Furthermore, the 21% Ag@MXene membrane achieved favorable rejection to organic foulants like bovine serum albumin (BSA) and methyl green (MG) in comparison to other reported membranes. This combination of controlled permeability and bactericidal properties makes Ag@MXene layered nanosheets attractive candidates towards the development of nanofiltration membranes for water purification and biomedical applications.

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the effect of thickness on the rate of water transport through polyamide nanofilm composite membranes for desalination by reverse osmosis.
Abstract: Thin-film composite membranes comprising a polyamide nanofilm separating layer on a support material are state of the art for desalination by reverse osmosis. Nanofilm thickness is thought to determine the rate of water transport through the membranes; although due to the fast and relatively uncontrolled interfacial polymerization reaction employed to form these nanofilms, they are typically crumpled and the separating layer is reported to be ≈50-200 nm thick. This crumpled structure has confounded exploration of the independent effects of thickness, permeation mechanism, and the support material. Herein, smooth sub-8 nm polyamide nanofilms are fabricated at a free aqueous-organic interface, exhibiting chemical homogeneity at both aqueous and organic facing surfaces. Transfer of these ultrathin nanofilms onto porous supports provides fast water transport through the resulting nanofilm composite membranes. Manipulating the intrinsic nanofilm thickness from ≈15 down to 8 nm reveals that water permeance increases proportionally with the thickness decrease, after which it increases nonlinearly to 2.7 L m-2 h-1 bar-1 as the thickness is further reduced to ≈6 nm.

Journal ArticleDOI
17 Aug 2018-Science
TL;DR: An additive approach is presented that uses electrospraying to deposit monomers directly onto a substrate, where they react to form polyamide, resulting in polyamide films that are smoother and thinner than conventional polyamides while still exhibiting good permselectivity relative to a commercial benchmarking membrane.
Abstract: Polyamide thickness and roughness have been identified as critical properties that affect thin-film composite membrane performance for reverse osmosis. Conventional formation methodologies lack the ability to control these properties independently with high resolution or precision. An additive approach is presented that uses electrospraying to deposit monomers directly onto a substrate, where they react to form polyamide. The small droplet size coupled with low monomer concentrations result in polyamide films that are smoother and thinner than conventional polyamides, while the additive nature of the approach allows for control of thickness and roughness. Polyamide films are formed with a thickness that is controllable down to 4-nanometer increments and a roughness as low as 2 nanometers while still exhibiting good permselectivity relative to a commercial benchmarking membrane.

Journal ArticleDOI
TL;DR: In this paper, the authors surveyed the recent progress in the development of polymeric membranes for membrane adsorption (MA) and showed that nanoparticles are potentially useful as fillers in the host membrane to enhance its performance.
Abstract: Application of polymeric membranes for the adsorption of hazardous pollutants may lead to the development of next-generation reusable and portable water purification appliances. Membranes for membrane adsorption (MA) have the dual function of membrane filtration and adsorption to be very effective to remove trace amounts of pollutants such as cationic heavy metals, anionic phosphates and nitrates. In this review article, recent progresses in the development of MA membranes are surveyed. In addition, recent progresses in the development of advanced adsorbents such as nanoparticles are summarized, since they are potentially useful as fillers in the host membrane to enhance its performance. The future directions of R&D in this field are also shown in the conclusion section.

Journal ArticleDOI
08 Feb 2018-Chem
TL;DR: In this article, the interfacial polymerization of polyfunctional amine and aldehyde monomers with a Lewis acid catalyst, Sc(OTf) 3, is described.

Journal ArticleDOI
TL;DR: Metal organic framework membranes, including ZIF-8 and UiO-66 membranes with uniform subnanometer pores consisting of angstrom-sized windows and nanometer-sized cavities for ultrafast selective transport of alkali metal ions are reported.
Abstract: Porous membranes with ultrafast ion permeation and high ion selectivity are highly desirable for efficient mineral separation, water purification, and energy conversion, but it is still a huge challenge to efficiently separate monatomic ions of the same valence and similar sizes using synthetic membranes. We report metal organic framework (MOF) membranes, including ZIF-8 and UiO-66 membranes with uniform subnanometer pores consisting of angstrom-sized windows and nanometer-sized cavities for ultrafast selective transport of alkali metal ions. The angstrom-sized windows acted as ion selectivity filters for selection of alkali metal ions, whereas the nanometer-sized cavities functioned as ion conductive pores for ultrafast ion transport. The ZIF-8 and UiO-66 membranes showed a LiCl/RbCl selectivity of ~4.6 and ~1.8, respectively, which are much greater than the LiCl/RbCl selectivity of 0.6 to 0.8 measured in traditional porous membranes. Molecular dynamics simulations suggested that ultrafast and selective ion transport in ZIF-8 was associated with partial dehydration effects. This study reveals ultrafast and selective transport of monovalent ions in subnanometer MOF pores and opens up a new avenue to develop unique MOF platforms for efficient ion separations in the future.

Journal ArticleDOI
TL;DR: The high separation performance and reusability of the membranes and the outstanding water stability of the MOFs suggested the developed membrane as a potential candidate for water treatment.
Abstract: Electrospun nanofiber composite membranes containing water-stable metal-organic frameworks (MOFs) particles (Zr-based MOF-808) supported on polyacrylonitrile (PAN) nanofiber synthesized via co-electrospinning have been prepared. MOF particles were dispersed in the organic polymer, and their subsequent presence was inferred by scanning electron microscopy. Membrane performance in heavy metal ion adsorption in batch filtration was evaluated on the basis of Cd2+ and Zn2+ ions sequestration. The adsorption capacities of the pristine MOF and the MOF composite membrane revealed that MOF particles in the membrane could be accessed for adsorption in the hydrophilic PAN membranes. The maximum adsorption capacities were 225.05 and 287.06 mg g–1 for Cd2+ and Zn2+, respectively. Conventional thermal activation of pristine MOF and composite membrane revealed a crystal downsizing, while “hydractivation” produced an expanded MOF with enhanced adsorption potentials. The PAN/MOF-808 “hydractivated” composite membrane coul...

Journal ArticleDOI
TL;DR: This work shows that a planarizable push–pull fluorescent probe called FliptR (fluorescent lipid tension reporter) can monitor changes in membrane tension by changing its fluorescence lifetime as a function of the twist between its fluorescent groups, and provides calibration curves that enable accurate measurement of membrane tension usingfluorescence lifetime imaging microscopy.
Abstract: Cells and organelles are delimited by lipid bilayers in which high deformability is essential to many cell processes, including motility, endocytosis and cell division. Membrane tension is therefore a major regulator of the cell processes that remodel membranes, albeit one that is very hard to measure in vivo. Here we show that a planarizable push-pull fluorescent probe called FliptR (fluorescent lipid tension reporter) can monitor changes in membrane tension by changing its fluorescence lifetime as a function of the twist between its fluorescent groups. The fluorescence lifetime depends linearly on membrane tension within cells, enabling an easy quantification of membrane tension by fluorescence lifetime imaging microscopy. We further show, using model membranes, that this linear dependency between lifetime of the probe and membrane tension relies on a membrane-tension-dependent lipid phase separation. We also provide calibration curves that enable accurate measurement of membrane tension using fluorescence lifetime imaging microscopy.

Journal ArticleDOI
TL;DR: The environmentally friendly synthesis of highly active Fe-N-C electrocatalysts for proton-exchange membrane fuel cells (PEMFCs) is desirable but remains challenging, and a simple and scalable method is presented to fabricate FeII -doped ZIF-8.
Abstract: The environmentally friendly synthesis of highly active Fe-N-C electrocatalysts for proton-exchange membrane fuel cells (PEMFCs) is desirable but remains challenging. A simple and scalable method is presented to fabricate FeII -doped ZIF-8, which can be further pyrolyzed into Fe-N-C with 3 wt % of Fe exclusively in Fe-N4 active moieties. Significantly, this Fe-N-C derived acidic PEMFC exhibits an unprecedented current density of 1.65 A cm-2 at 0.6 V and the highest power density of 1.14 W cm-2 compared with previously reported NPMCs. The excellent PEMFC performance can be attributed to the densely and atomically dispersed Fe-N4 active moieties on the small and uniform catalyst nanoparticles.

Journal ArticleDOI
TL;DR: In this paper, the ultrathin 2D MXene membrane with thickness down to several tens of nanometers was developed for pervaporation desalination by stacking synthesized atomic-thin MXene nanosheets.

Journal ArticleDOI
07 Sep 2018-Science
TL;DR: In this article, the fabrication of ZIF nanocomposite membranes by means of an all-vapor-phase processing method based on atomic layer deposition (ALD) of ZnO in a porous support followed by ligand vapor treatment was demonstrated.
Abstract: Zeolitic imidazolate framework (ZIF) membranes are emerging as a promising energy-efficient separation technology However, their reliable and scalable manufacturing remains a challenge We demonstrate the fabrication of ZIF nanocomposite membranes by means of an all-vapor-phase processing method based on atomic layer deposition (ALD) of ZnO in a porous support followed by ligand-vapor treatment After ALD, the obtained nanocomposite exhibits low flux and is not selective, whereas after ligand-vapor (2-methylimidazole) treatment, it is partially transformed to ZIF and shows stable performance with high mixture separation factor for propylene over propane (an energy-intensive high-volume separation) and high propylene flux Membrane synthesis through ligand-induced permselectivation of a nonselective and impermeable deposit is shown to be simple and highly reproducible and holds promise for scalability

Journal ArticleDOI
02 Aug 2018-ACS Nano
TL;DR: An organic phototheranostic system that biomimetically targets the component in the tumor microenvironment for enhanced multimodal cancer theranostics and generates enhanced cytotoxic heat and singlet oxygen to exert combinational photothermal and photodynamic therapy, leading to an antitumor efficacy higher than that of the counterparts.
Abstract: Phototheranostic nanoagents are promising for early diagnosis and precision therapy of cancer. However, their imaging ability and therapeutic efficacy are often limited due to the presence of delivery barriers in the tumor microenvironment. Herein, we report the development of organic multimodal phototheranostic nanoagents that can biomimetically target cancer-associated fibroblasts in the tumor microenvironment for enhanced multimodal imaging-guided cancer therapy. Such biomimetic nanocamouflages comprise a near-infrared (NIR) absorbing semiconducting polymer nanoparticle (SPN) coated with the cell membranes of activated fibroblasts. The homologous targeting mechanism allows the activated fibroblast cell membrane coated SPN (AF-SPN) to specifically target cancer-associated fibroblasts, leading to enhanced tumor accumulation relative to the uncoated and cancer cell membrane coated counterparts after systemic administration in living mice. As such, AF-SPN not only provides stronger NIR fluorescence and photoacoustic signals to detect tumors but also generates enhanced cytotoxic heat and singlet oxygen to exert combinational photothermal and photodynamic therapy, ultimately leading to an antitumor efficacy higher than that of the counterparts. This study introduces an organic phototheranostic system that biomimetically targets the component in the tumor microenvironment for enhanced multimodal cancer theranostics.

Journal ArticleDOI
TL;DR: Compared to conventional TFC nanofiltration membranes, the novel TFCn membrane successfully overcame the longstanding permeability and selectivity trade-off and paves a new avenue for fabricating high performance TFC membranes.
Abstract: Conventional thin-film composite (TFC) membranes suffer from the trade-off relationship between permeability and selectivity, known as the “upper bound”. In this work, we report a high performance thin-film composite membrane prepared on a tannic acid (TA)-Fe nanoscaffold (TFCn) to overcome such upper bound. Specifically, a TA-Fe nanoscaffold was first coated onto a polysulfone substrate, followed by performing an interfacial polymerization reaction between trimesoyl chloride (TMC) and piperazine (PIP). The TA-Fe nanoscaffold enhanced the uptake of amine monomers and provided a platform for their controlled release. The smaller surface pore size of the TA-Fe coated substrate further eliminated the intrusion of polyamide into the substrate pores. The resulting membrane TFCn showed a water permeability of 19.6 ± 0.5 L m2– h–1 bar–1, which was an order of magnitude higher than that of control TFC membrane (2.2 ± 0.3 L m–2 h–1 bar–1). The formation of a more order polyamide rejection layer also significantly ...

Journal ArticleDOI
TL;DR: The synthesis of a crystalline TFP-DHF 2D COF membrane constructed from two precursors of 1,3,5-triformylphloroglucinol (TFP) and 9,9-dihexylfluorene-2,7-diamine (DHF) through the Langmuir-Blodgett (LB) method is reported, for the first timed.
Abstract: Two-dimensional (2D) covalent organic framework (COF) materials have the most suitable microstructure for membrane applications in order to achieve both high flux and high selectivity. Here, we report the synthesis of a crystalline TFP-DHF 2D COF membrane constructed from two precursors of 1,3,5-triformylphloroglucinol (TFP) and 9,9-dihexylfluorene-2,7-diamine (DHF) through the Langmuir–Blodgett (LB) method, for the first timed. A single COF layer is precisely four unit cells thick and can be transferred to different support surfaces layer by layer. The TFP-DHF 2D COF membrane supported on an anodic aluminum oxide (AAO) porous support displayed remarkable permeabilities for both polar and nonpolar organic solvents, which were approximately 100 times higher than that of the amorphous membranes prepared by the same procedure and similar to that for the best of the reported polymer membranes. The transport mechanism through the TFP-DHF 2D COF membrane was found to be a viscous flow coupled with a strong slip...

Journal ArticleDOI
TL;DR: This review summarizes the properties and applications of organic and inorganic materials, antifouling mechanisms, and surface modification of pre-formed membranes.
Abstract: Membrane fouling, which arises from the nonspecific interaction between the membrane surface and foulants, significantly impedes the efficient application of membrane technology. Antifouling and antimicrobial materials are important classes of functional materials for the surface modification of reverse osmosis and nanofiltration membranes. Applications of various organic and inorganic materials having different characteristics such as size, surface charge, hydrophilicity, functionality and biocidal activity, provide protective/sacrificial layers to the membrane surface against different foulants and microorganisms. This review summarizes the properties and applications of organic and inorganic materials, antifouling mechanisms, and surface modification of pre-formed membranes. Materials such as zwitterionic polymers, neutral polymers, polyelectrolytes, amphiphilic polymers, quaternary ammonium polymers, biopolymers, hydrophilic polymers, polydopamine, inorganic salts, and nanomaterials have shown great potential in reducing foulant adhesion and/or proliferative microbial growth on membrane surfaces.