scispace - formally typeset
Search or ask a question

Showing papers on "Radio frequency published in 2013"


Proceedings ArticleDOI
27 Aug 2013
TL;DR: The design of a communication system that enables two devices to communicate using ambient RF as the only source of power is presented, enabling ubiquitous communication where devices can communicate among themselves at unprecedented scales and in locations that were previously inaccessible.
Abstract: We present the design of a communication system that enables two devices to communicate using ambient RF as the only source of power. Our approach leverages existing TV and cellular transmissions to eliminate the need for wires and batteries, thus enabling ubiquitous communication where devices can communicate among themselves at unprecedented scales and in locations that were previously inaccessible.To achieve this, we introduce ambient backscatter, a new communication primitive where devices communicate by backscattering ambient RF signals. Our design avoids the expensive process of generating radio waves; backscatter communication is orders of magnitude more power-efficient than traditional radio communication. Further, since it leverages the ambient RF signals that are already around us, it does not require a dedicated power infrastructure as in traditional backscatter communication. To show the feasibility of our design, we prototype ambient backscatter devices in hardware and achieve information rates of 1 kbps over distances of 2.5 feet and 1.5 feet, while operating outdoors and indoors respectively. We use our hardware prototype to implement proof-of-concepts for two previously infeasible ubiquitous communication applications.

1,269 citations


Journal ArticleDOI
TL;DR: In this article, a city-wide RF spectral survey was undertaken from outside all of the 270 London Underground stations at street level, and four harvesters (comprising antenna, impedance-matching network, rectifier, maximum power point tracking interface, and storage element) were designed to cover four frequency bands from the largest RF contributors within the ultrahigh frequency (0.3-3 GHz) part of the frequency spectrum.
Abstract: RF harvesting circuits have been demonstrated for more than 50 years, but only a few have been able to harvest energy from freely available ambient (i.e., non-dedicated) RF sources. In this paper, our objectives were to realize harvester operation at typical ambient RF power levels found within urban and semi-urban environments. To explore the potential for ambient RF energy harvesting, a city-wide RF spectral survey was undertaken from outside all of the 270 London Underground stations at street level. Using the results from this survey, four harvesters (comprising antenna, impedance-matching network, rectifier, maximum power point tracking interface, and storage element) were designed to cover four frequency bands from the largest RF contributors (DTV, GSM900, GSM1800, and 3G) within the ultrahigh frequency (0.3-3 GHz) part of the frequency spectrum. Prototypes were designed and fabricated for each band. The overall end-to-end efficiency of the prototypes using realistic input RF power sources is measured; with our first GSM900 prototype giving an efficiency of 40%. Approximately half of the London Underground stations were found to be suitable locations for harvesting ambient RF energy using our four prototypes. Furthermore, multiband array architectures were designed and fabricated to provide a broader freedom of operation. Finally, an output dc power density comparison was made between all the ambient RF energy harvesters, as well as alternative energy harvesting technologies, and for the first time, it is shown that ambient RF harvesting can be competitive with the other technologies.

778 citations


Journal ArticleDOI
Hubregt J. Visser1, Ruud Vullers1
09 Apr 2013
TL;DR: The feasibility of harvesting is discussed, leading to the conclusion that RF energy transport is preferred for powering small sized sensors by radio-frequency energy harvesting or transport.
Abstract: This paper presents an overview of principles and requirements for powering wireless sensors by radio-frequency (RF) energy harvesting or transport. The feasibility of harvesting is discussed, leading to the conclusion that RF energy transport is preferred for powering small sized sensors. These sensors are foreseen in future Smart Buildings. Transmitting in the ISM frequency bands, respecting the transmit power limits ensures that the International Commission on Non-Ionizing Radiation Protection (ICNIRP) exposure limits are not exceeded. With the transmit side limitations being explored, the propagation channel is next discussed, leading to the observation that a better than free-space attenuation may be achieved in indoors line-of-sight environments. Then, the components of the rectifying antenna (rectenna) are being discussed: rectifier, dc-dc boost converter, and antenna. The power efficiencies of all these rectenna subcomponents are being analyzed and finally some examples are shown. To make RF energy transport a feasible powering technology for low-power sensors, a number of precautions need to be taken. The propagation channel characteristics need to be taken into account by creating an appropriate transmit antenna radiation pattern. All subcomponents of the rectenna need to be impedance matched, and the power transfer efficiencies of the rectifier and the boost converter need to be optimized.

629 citations


Proceedings ArticleDOI
12 Dec 2013
TL;DR: A basic tutorial on the types of radio frequency communications and the benefits and liabilities of each are given and specific topics to be explored will be licensed verses unlicensed frequencies, distance between remote radios and base stations, and communications architectures.
Abstract: Radio Frequency (RF) communications are an important smart grid enabler for functions such as volt/VAR control, recloser control, and feeder restorations and isolation. This paper will give a basic tutorial on the types of radio frequency communications and the benefits and liabilities of each. Specific topics to be explored will be licensed verses unlicensed frequencies, distance between remote radios and base stations, and communications architectures. Radio technology is often referred in numerical ranges or frequencies. The decision on which frequency to employ in a network depends on a few key variables. Prior to deciding which frequency for a network, the application for the radio use will assist with dictation of which frequency range to utilize. Applications such as recloser control and volt/Var control may require a radio device that can provide a high bandwidth/fast speed solution. Other SCADA applications such as sensor monitoring may only require small bandwidth and for data delivery to be at a much slower speed. Another variable when deciding on a radio network is the distance from the main SCADA hosts to end remote devices such as RTUs or PLCs. Lower end frequencies (100 MHz-900 MHz) provide further coverage and greater distance from base stations/Access Points to remote end devices, whereas higher frequencies (2.4 GHz-5.8 GHz) provide shorter distance coverage, but higher bandwidth and relay data back to SCADA hosts much faster. Determining a network's architecture should focus on either the desire of a private, licensed network or the notion of an unlicensed, less expensive network. The lower licensed frequency ranges (100 MHz, 200 MHz, 400 MHz and upper 900 MHz bands) are often referred to as MAS (Multiple Address Systems) networks and require license acquisition from the FCC once geographical coverage is determined. These licenses are granted for the lower frequencies as mentioned previously but are considered the proprietary use of the owner. Anyone operating in these frequencies will be fined/cited by the FCC. The less expensive, unlicensed network is allowable for frequencies ranging from 902 MHz-928 MHz, which is defined as the ISM (Industrial, Scientific, and Medical) bands. Within the unlicensed frequency band, there exist registered bands (3.65 GHz) that employ WiMax (Wireless Microwave Access for Broadband) technology that provide shorter coverage for remote devices, however, the bandwidth and speed provided by these frequencies make them just as popular for networks. Further analysis and discussion of licensed versus unlicensed radio wireless communications is proposed in this paper.

492 citations


Journal ArticleDOI
TL;DR: In this article, a dual-band rectenna that can harvest ambient RF power of GSM-1800 and UMTS-2100 bands efficiently is presented, which is based on a broadband 1 × 4 quasi-Yagi antenna array with bandwidth from 1.8 to 2.2 GHz.
Abstract: This letter presents a dual-band rectenna that can harvest ambient RF power of GSM-1800 and UMTS-2100 bands efficiently. The novel rectenna is based on a broadband 1 × 4 quasi-Yagi antenna array with bandwidth from 1.8 to 2.2 GHz and high gains of 10.9 and 13.3 dBi at 1.85 and 2.15 GHz, respectively. Also, a dual-band rectifier that can sufficiently enhance the RF-to-dc power conversion efficiency (PCE) at ambient RF power level is designed for the rectenna. Measurement results show that a PCE of 40% and an output dc voltage of 224 mV have been achieved over a 5-k Ω resistor when the dual-tone input power density is 455 μW/m 2. Additionally, output dc voltage varying between 300-400 mV can be obtained by collecting the relatively low ambient RF power.

354 citations


Journal ArticleDOI
02 Apr 2013
TL;DR: This paper discusses far-field wireless powering for low-power wireless sensors, with applications to sensing in environments where it is difficult or impossible to change batteries and where the exact position of the sensors might not be known.
Abstract: This paper discusses far-field wireless powering for low-power wireless sensors, with applications to sensing in environments where it is difficult or impossible to change batteries and where the exact position of the sensors might not be known. With expected radio-frequency (RF) power densities in the 20-200- μW/cm2 range, and desired small sensor overall size, low-power nondirective wireless powering is appropriate for sensors that transmit data at low duty cycles. The sensor platform is powered through an antenna which receives incident electromagnetic waves in the gigahertz frequency range, couples the energy to a rectifier circuit which charges a storage device (e.g., thin-film battery) through an efficient power management circuit, and the entire platform, including sensors and a low-power wireless transmitter, and is controlled through a low-power microcontroller. For low incident power density levels, codesign of the RF powering and the power management circuits is required for optimal performance. Results for hybrid and monolithic implementations of the power management circuitry are presented with integrated antenna rectifiers operating in the 1.96-GHz cellular and in 2.4-GHz industrial-scientific-medical (ISM) bands.

281 citations


Proceedings ArticleDOI
08 Apr 2013
TL;DR: This study extends the DfP technique to count and localize multiple subjects in indoor environments, using a successive cancellation based algorithm to iteratively determine the number of subjects, and calls the proposed algorithm SCPL - sequential counting, parallel localizing.
Abstract: Radio frequency based device-free passive (DfP) localization techniques have shown great potentials in localizing individual human subjects, without requiring them to carry any radio devices In this study, we extend the DfP technique to count and localize multiple subjects in indoor environments To address the impact of multipath on indoor radio signals, we adopt a fingerprinting based approach to infer subject locations from observed signal strengths through profiling the environment When multiple subjects are present, our objective is to use the profiling data collected by a single subject to count and localize multiple subjects without any extra effort In order to address the non-linearity of the impact of multiple subjects, we propose a successive cancellation based algorithm to iteratively determine the number of subjects We model indoor human trajectories as a state transition process, exploit indoor human mobility constraints and integrate all information into a conditional random field (CRF) to simultaneously localize multiple subjects As a result, we call the proposed algorithm SCPL -- sequential counting, parallel localizing We test SCPL with two different indoor settings, one with size 150 m2 and the other 400 m2 In each setting, we have four different subjects, walking around in the deployed areas, sometimes with overlapping trajectories Through extensive experimental results, we show that SCPL can count the present subjects with 86% counting percentage when their trajectories are not completely overlapping Our localization algorithms are also highly accurate, with an average localization error distance of 13 m

247 citations


Patent
02 Jul 2013
TL;DR: In this article, the authors proposed a system for delivering power wirelessly using a highly beam-formed array of radio frequency (RF) transmitters as a source and a spatially-beamed array of receivers that collect the impinged RF power and feed a multistage RF to direct current (RF-DC) conversion circuit.
Abstract: Methods and systems are provided for achieving delivery of power wirelessly using a highly beam-formed array of radio frequency (RF) transmitters as a source and a spatially beam-formed array of receivers that collect the impinged RF power and feed a multistage RF to direct current (RF-DC) conversion circuit that, for example, increases output voltage by doubling the voltage at each stage, while power delivery remains constant. One or more embodiments may provide energy wirelessly and—unlike conventional systems where the power flux density may be too low for applications where an energy density (specific energy) on the order of several mega-Joules per kilogram (MJ/Kg) is desired—may provide sufficient power flux density for many practical applications.

235 citations


Patent
25 Nov 2013
TL;DR: In this paper, an embodiment of a system for wirelessly charging a wrist-worn device may include a radio frequency charging energy generating element, and an antenna configured to radiate the RF charging energy, the antenna comprising a first coil and a second coil, each comprising a plurality of windings, the windings of the first coil being wound in a direction opposite the direction of the second coil.
Abstract: An embodiment of a system for wirelessly charging a wrist-worn device may include a radio frequency (RF) charging energy generating element, and an antenna configured to radiate the RF charging energy, the antenna comprising a first coil and a second coil, the first coil and the second coil each comprising a plurality of windings, the windings of the first coil being wound in a direction opposite the direction of the windings of the second coil. An embodiment of a wrist-worn charge-receiving device may include an antenna coil adapted to receive radio frequency (RF) charging energy, the antenna coil comprising non-uniform windings; and a rechargeable power source coupled to the antenna coil, the antenna coil adapted to provide the RF charging energy to the rechargeable power source.

227 citations


Patent
10 Sep 2013
TL;DR: In this paper, a method of communicating data in a Bluetooth™ low energy (BLE) module is provided, which includes modulating an outbound communication signal into a modulated signal with a particular modulation scheme based on a modulation type, and transmitting the modulated signals to a remote device via a wireless communication connection associated with the modulation type.
Abstract: A method of communicating data in a Bluetooth™ low energy (BLE) module is provided. The method includes modulating an outbound communication signal into a modulated signal with a particular modulation scheme based on a modulation type, and transmitting the modulated signal to a remote device via a wireless communication connection associated with the modulation type. The method also includes receiving an inbound radio frequency (RF) signal, determining if the inbound RF signal is associated with a modulation type, and demodulating the inbound RF signal with a particular modulation scheme based on the modulation type if the inbound RF signal is determined to be associated with a modulation type. In some aspects, the inbound RF signal and outbound modulated signal have symbol rates of 2 Megasymbols per second. In some implementations, the method includes switching between a legacy BLE system and an enhanced rate BLE system.

222 citations


Journal ArticleDOI
TL;DR: In this article, the authors demonstrate the first simultaneous site and time-resolved measurements of a time reversal invariant topological band-structure, which they realize in a radio frequency photonic circuit.
Abstract: From studies of exotic quantum many-body phenomena to applications in spintronics and quantum information processing, topological materials are poised to revolutionize the condensed matter frontier and the landscape of modern materials science. Accordingly, there is a broad effort to realize topologically non-trivial electronic and photonic materials for fundamental science as well as practical applications. In this work, we demonstrate the first simultaneous site- and time- resolved measurements of a time reversal invariant topological band-structure, which we realize in a radio frequency (RF) photonic circuit. We control band-structure topology via local permutation of a traveling wave capacitor-inductor network, increasing robustness by going beyond the tight-binding limit. We observe a gapped density of states consistent with a modified Hofstadter spectrum at a flux per plaquette of $\phi=\pi/2$. In-situ probes of the band-gaps reveal spatially-localized bulk-states and de-localized edge-states. Time-resolved measurements reveal dynamical separation of localized edge-excitations into spin-polarized currents. The RF circuit paradigm is naturally compatible with non-local coupling schemes, allowing us to implement a Mobius strip topology inaccessible in conventional systems. This room-temperature experiment illuminates the origins of topology in band-structure, and when combined with circuit quantum electrodynamics (QED) techniques, provides a direct path to topologically-ordered quantum matter.

Patent
12 Nov 2013
TL;DR: An RF lens includes a multitude of radiators adapted to transmit radio frequency electromagnetic EM waves whose phases are modulated so as to concentrate the radiated power in a small volume of space in order to power an electronic device positioned in that space as discussed by the authors.
Abstract: An RF lens includes a multitude of radiators adapted to transmit radio frequency electromagnetic EM waves whose phases are modulated so as to concentrate the radiated power in a small volume of space in order to power an electronic device positioned in that space. Accordingly, the waves emitted by the radiators are caused to interfere constructively at that space. The multitude of radiators are optionally formed in a one-dimensional or two-dimensional array. The electromagnetic waves radiated by the radiators have the same frequency but variable amplitudes.

Proceedings ArticleDOI
28 Mar 2013
TL;DR: An ambient RF energy harvesting sensor node with onboard sensing and communication functionality was developed and tested and shown to operate at a distance of 10.4 km from a 1 MW UHF television broadcast transmitter, and over 200 m from a cellular base transceiver station.
Abstract: An ambient RF energy harvesting sensor node with onboard sensing and communication functionality was developed and tested. The minimal RF input power required for sensor node operation was -18 dBm (15.8 μW). Using a 6 dBi receive antenna, the most sensitive RF harvester was shown to operate at a distance of 10.4 km from a 1 MW UHF television broadcast transmitter, and over 200 m from a cellular base transceiver station. A complete ambient RF-powered prototype was constructed which measured temperature and light level and wirelessly transmitted these measurements.

Patent
15 Mar 2013
TL;DR: In this article, a method of facilitating wireless testing of multiple radio frequency (RF) signal transceiver devices under test (DUTs) is proposed, using multiple antennas within a shielded enclosure containing the DUTs.
Abstract: A method of facilitating wireless testing of multiple radio frequency (RF) signal transceiver devices under test (DUTs). Using multiple antennas within a shielded enclosure containing the DUTs, multiple wireless RF test signals radiated to the DUTs can have their respective signal phases controlled to maximize the direct-coupled signals to their respective intended DUTs while minimizing the cross-coupled signals. Additionally, the wireless RF test signals radiated to the DUTs can have their respective signal magnitudes controlled to normalize the direct-coupled signals to their respective intended DUTs while still sufficiently reducing the cross-coupled signals. As a result, compensation is provided for the multipath signal environment within the shielded enclosure, thereby simulating wired test signal paths during wireless testing of the DUTs.

Patent
12 Nov 2013
TL;DR: In this paper, the authors define an elongate RF coverage pattern, which includes a conical RF launch structure coupled to the local RF communications device, and an elongated electrical conductor having a proximal end coupled to an RF antenna and a distal end spaced apart from the conical antenna.
Abstract: A radio frequency (RF) communications system includes a local RF communications device and an RF antenna including a conical RF launch structure coupled to the local RF communications device, and an elongate electrical conductor having a proximal end coupled to the conical RF launch structure and a distal end spaced apart from the conical RF launch structure to define an elongate RF coverage pattern. The elongate conductor may be a coaxial cable. At least one remote RF communications device, within the elongate RF coverage pattern, wirelessly communicates with the local RF communications device.

Journal ArticleDOI
TL;DR: In this article, the authors provide a review of the current state-of-the-art of complex oxide and multiferroic thin film materials and devices, identify technical issues and technical challenges that need to be overcome for successful insertion of the technology for both military and commercial applications, and provide mitigation strategies to address these technical challenges.
Abstract: There has been significant progress on the fundamental science and technological applications of complex oxides and multiferroics. Among complex oxide thin films, barium strontium titanate (BST) has become the material of choice for room-temperature-based voltage-tunable dielectric thin films, due to its large dielectric tunability and low microwave loss at room temperature. BST thin film varactor technology based reconfigurable radio frequency (RF)/microwave components have been demonstrated with the potential to lower the size, weight, and power needs of a future generation of communication and radar systems. Low-power multiferroic devices have also been recently demonstrated. Strong magneto-electric coupling has also been demonstrated in different multiferroic heterostructures, which show giant voltage control of the ferromagnetic resonance frequency of more than two octaves. This manuscript reviews recent advances in the processing, and application development for the complex oxides and multiferroics, with the focus on voltage tunable RF/microwave components. The over-arching goal of this review is to provide a synopsis of the current state-of the-art of complex oxide and multiferroic thin film materials and devices, identify technical issues and technical challenges that need to be overcome for successful insertion of the technology for both military and commercial applications, and provide mitigation strategies to address these technical challenges.

Proceedings ArticleDOI
08 Apr 2013
TL;DR: This work presents and evaluates a system which can locate stationary or moving people, without calibration, by using kernel distance to quantify the difference between two histograms of signal strength measurements.
Abstract: Network radio frequency (RF) environment sensing (NRES) systems pinpoint and track people in buildings using changes in the signal strength measurements made by a wireless sensor network. It has been shown that such systems can locate people who do not participate in the system by wearing any radio device, even through walls, because of the changes that moving people cause to the static wireless sensor network. However, many such systems cannot locate stationary people. We present and evaluate a system which can locate stationary or moving people, without calibration, by using kernel distance to quantify the difference between two histograms of signal strength measurements. From five experiments, we show that our kernel distance-based radio tomographic localization system performs better than the state-of-the-art NRES systems in different non line-of-sight environments.

Journal ArticleDOI
TL;DR: Reducing the required peak power without bandwidth compromises allows much higher accelerations for spin‐echo methods such as SE‐fMRI and diffusion‐weighted MRI where multibanded slice acceleration has been limited by available peak power.
Abstract: Purpose: To evaluate an alternative method for generating multibanded radiofrequency (RF) pulses for use in multiband slice-accelerated imaging with slice-GRAPPA unaliasing, substantially reducing the required peak power without bandwidth compromises. This allows much higher accelerations for spin-echo methods such as SE-fMRI and diffusion-weighted MRI where multibanded slice acceleration has been limited by available peak power. Theory and Methods: Multibanded “time-shifted” RF pulses were generated by inserting temporal shifts between the applications of RF energy for individual bands, avoiding worst-case constructive interferences. Slice profiles and images in phantoms and human subjects were acquired at 3 T. Results: For typical sinc pulses, time-shifted multibanded RF pulses were generated with little increase in required peak power compared to single-banded pulses. Slice profile quality was improved by allowing for higher pulse bandwidths, and image quality was improved by allowing for optimum flip angles to be achieved. Conclusion: A simple approach has been demonstrated that significantly alleviates the restrictions imposed on achievable slice acceleration factors in multiband spin-echo imaging due to the power requirements of multibanded RF pulses. This solution will allow for increased accelerations in diffusion-weighted MRI applications where data acquisition times are normally very long and the ability to accelerate is extremely valuable. Magn Reson Med 69:1261–1267, 2013 Wiley Periodicals, Inc.

Book
31 Jul 2013
TL;DR: In this article, magnetic field response sensors designed as passive inductor-capacitor circuits produce magnetic field responses whose harmonic frequencies correspond to states of physical properties for which the sensors measure.
Abstract: Magnetic field response sensors designed as passive inductor-capacitor circuits produce magnetic field responses whose harmonic frequencies correspond to states of physical properties for which the sensors measure. Power to the sensing element is acquired using Faraday induction. A radio frequency antenna produces the time varying magnetic field used for powering the sensor, as well as receiving the magnetic field response of the sensor. An interrogation architecture for discerning changes in sensor's response frequency, resistance and amplitude is integral to the method thus enabling a variety of measurements. Multiple sensors can be interrogated using this method, thus eliminating the need to have a data acquisition channel dedicated to each sensor. The method does not require the sensors to be in proximity to any form of acquisition hardware. A vast array of sensors can be used as interchangeable parts in an overall sensing system.

Journal ArticleDOI
TL;DR: In this article, a series of radio, optical, X-ray, and γ-ray observations of the BL Lac object S50716+714 carried out between April 2007 and January 2011 were obtained using several ground and space-based facilities.
Abstract: We present the results of a series of radio, optical, X-ray, and γ-ray observations of the BL Lac object S50716+714 carried out between April 2007 and January 2011. The multifrequency observations were obtained using several ground- and space-based facilities. The intense optical monitoring of the source reveals faster repetitive variations superimposed on a long-term variability trend on a time scale of ∼350 days. Episodes of fast variability recur on time scales of ∼60−70 days. The intense and simultaneous activity at optical and γ-ray frequencies favors the synchrotron self-Compton mechanism for the production of the high-energy emission. Two major low-peaking radio flares were observed during this high optical/γ-ray activity period. The radio flares are characterized by a rising and a decaying stage and agrees with the formation of a shock and its evolution. We found that the evolution of the radio flares requires a geometrical variation in addition to intrinsic variations of the source. Different estimates yield robust and self-consistent lower limits of δ ≥ 20 and equipartition magnetic field Beq ≥ 0.36 G. Causality arguments constrain the size of emission region θ ≤ 0.004 mas. We found a significant correlation between flux variations at radio frequencies with those at optical and γ-rays. The optical/GeV flux variations lead the radio variability by ∼65 days. The longer time delays between low-peaking radio outbursts and optical flares imply that optical flares are the precursors of radio ones. An orphan X-ray flare challenges the simple, one-zone emission models, rendering them too simple. Here we also describe the spectral energy distribution modeling of the source from simultaneous data taken through different activity periods.

Patent
13 May 2013
TL;DR: In this paper, a multi-mode plasma processing system is described, where the primary source uses RF energy of a first frequency, while the secondary source utilizes energy of second, different frequency.
Abstract: A multi-chambered processing platform includes one or more multi-mode plasma processing systems. In embodiments, a multi-mode plasma processing system includes a multi-mode source assembly having a primary source to drive an RF signal on a showerhead electrode within the process chamber and a secondary source to generate a plasma with by driving an RF signal on an electrode downstream of the process chamber. In embodiments, the primary 7 source utilizes RF energy of a first frequency, while the secondary source utilizes RF energy of second, different frequency. The showerhead electrode is coupled to ground through a frequency dependent filter that adequately discriminates between the first and second frequencies for the showerhead electrode to be RF powered during operation of the primary source, yet adequately grounded during operation of the secondary plasma source without electrical contact switching or reliance on physically moving parts.

Journal ArticleDOI
TL;DR: It is demonstrated that it is difficult to harvest RF energy over a wide frequency band if the ambient RF energy sources are weak, owing to the voltage requirements.
Abstract: RF energy is widely available in urban areas and thus presents a promising ambient energy harvesting source. In this paper, a CMOS harvester circuit is modeled and analyzed in detail at low environmental power levels. Based on the circuit analysis, a design procedure is given for a narrowband energy harvester. The antenna and harvester co-design methodology is discussed to improve RF to DC energy conversion efficiency. We demonstrate that it is difficult to harvest RF energy over a wide frequency band if the ambient RF energy sources are weak, owing to the voltage requirements. Since most ambient RF energy lies in a few narrow bands, a dual/multi-band energy harvester architecture should be able to harvest much of the available RF energy. A dual-band CMOS energy harvester is designed and fabricated using an IBM 0.13 μm process. The simulated and measured results demonstrate a dual-band energy harvester that obtains over 9% efficiency for two different bands (around 900 MHz and around 1900 MHz) at an input power as low as -19.3 dBm. The DC output voltage of this harvester is over 1 V, which can be used to recharge the battery to form an inexhaustibly powered communication system.

Journal ArticleDOI
TL;DR: The first optical nanoscale circuits with fully three-dimensional lumped elements are experimentally demonstrated, which pave the way toward extending conventional circuit concepts into the visible domain for applications in data storage, wireless optical links, and related venues.
Abstract: Nanoantennas are key optical components that bridge nanometer-scale optical signals to far-field, free-space radiation. In analogy to radio frequency antennas where tuning and impedance-matching are accomplished with lumped circuit elements, one could envision nanoantenna properties controlled by nanoscale, optical frequency circuit elements in which circuit operations are based on photons rather than electrons. A recent investigation of the infrared nanocircuits has demonstrated the filtering functionality using dielectric gratings. However, these two-dimensional prototypes have limited applicability in real-life devices. Here we experimentally demonstrate the first optical nanoscale circuits with fully three-dimensional lumped elements, which we use to tune and impedance-match a single optical dimer nanoantenna. We control the antenna resonance and impedance bandwidth using suitably designed loads with combinations of basic circuit elements: nanoscale capacitors, inductors, and resistors. Our results pa...

Patent
27 Aug 2013
TL;DR: In this paper, an envelope power supply calibration of a multi-mode RF power amplifier (PA) was proposed to ensure adequate headroom when operating using one of multiple communications modes. But, the power supply was not restricted to provide a minimum allowable magnitude based on an RF signal level of the PA.
Abstract: The present disclosure relates to envelope power supply calibration of a multi-mode RF power amplifier (PA) to ensure adequate headroom when operating using one of multiple communications modes. The communications modes may include multiple modulation modes, a half-duplex mode, a full-duplex mode, or any combination thereof. As such, each communications mode may have specific peak-to-average power and linearity requirements for the multi-mode RF PA. As a result, each communications mode may have corresponding envelope power supply headroom requirements. The calibration may include determining a saturation operating constraint based on calibration data obtained during saturated operation of the multi-mode RF PA. During operation of the multi-mode RF PA, the envelope power supply may be restricted to provide a minimum allowable magnitude based on an RF signal level of the multi-mode RF PA, the communications mode, and the saturation operating constraint to provide adequate headroom.

Journal ArticleDOI
TL;DR: A novel compact, lightweight and highly efficient tetra-band rectenna, able to harvest RF energy from GSM 900, GSM 1800, UMTS and WiFi sources available in the ambient, and tested in terms of stored energy while harvesting from a mobile cell-phone call.
Abstract: In this study, we exploit genetic algorithms to design a rectenna required to harvest ambient radio-frequency (RF) energy from four different RF bands in critical (ultra-low power) conditions. For this purpose a set of multi-resonant annular-ring patch antennas are pixel-wise described inside an electromagnetic simulator to provide the `population' of individuals among which the genetic tool is able to select the most adapted one with respect to the design specifications. The further use of circuit-level non-linear simulation tool, based on Harmonic balance technique, allows the rigorous multi-band design of the whole rectenna system in RF stationary conditions at several received power levels. The result is a novel compact, lightweight and highly efficient tetra-band rectenna, able to harvest RF energy from GSM 900, GSM 1800, UMTS and WiFi sources available in the ambient. At these frequency bands high radiation efficiency is desired as an essential prerequisite for optimally handling very low-power densities. Very good agreement with measurements of both the radiating and rectifying designs is demonstrated in real office scenarios. Finally the rectenna is connected to a power management unit and the resulting assembly is tested in terms of stored energy while harvesting from a mobile cell-phone call.

Proceedings ArticleDOI
02 Jun 2013
TL;DR: In this article, the authors proposed a triple-band RF energy harvesting system using composite right/left hand transmission line (CRLH) and a high efficiency, sensitive tripleband rectifier, which provides a maximum conversion efficiency of 80%, 46% and 42% at 940MHz, 1.95GHz and 2.44 GHz, respectively.
Abstract: We present the design and development of a novel antenna that effectively radiates at three frequency bands to harvest RF energy from cellular network frequency bands (900 MHz and 1900 MHz) and Wi-Fi sources (2.4 GHz) available in ambience. The antenna is designed using the combination of three different design techniques including composite right/left hand transmission line (CRLH). In addition, a high efficiency, sensitive triple-band rectifier is also proposed in this work. The rectifier provides a maximum conversion efficiency of 80%, 46% and 42% at 940MHz, 1.95GHz and 2.44 GHz, respectively. The experimental results demonstrate that the proposed triple-band RF energy harvesting system can collect 6.6 times more power than the single 900MHz band one and 3.4 times more power than three individual bands combined.

Journal ArticleDOI
30 Apr 2013-ACS Nano
TL;DR: In vivo ultrathin silicon-based liquid crystal polymer (LCP) monolithically encapsulated flexible radio frequency integrated circuits (RFICs) for medical wireless communication and in vivo electrical reliability and bioaffinity of the LCP monoencapsulated RFIC devices are confirmed in rats.
Abstract: Biointegrated electronics have been investigated for various healthcare applications which can introduce biomedical systems into the human body. Silicon-based semiconductors perform significant roles of nerve stimulation, signal analysis, and wireless communication in implantable electronics. However, the current large-scale integration (LSI) chips have limitations in in vivo devices due to their rigid and bulky properties. This paper describes in vivo ultrathin silicon-based liquid crystal polymer (LCP) monolithically encapsulated flexible radio frequency integrated circuits (RFICs) for medical wireless communication. The mechanical stability of the LCP encapsulation is supported by finite element analysis simulation. In vivo electrical reliability and bioaffinity of the LCP monoencapsulated RFIC devices are confirmed in rats. In vitro accelerated soak tests are performed with Arrhenius method to estimate the lifetime of LCP monoencapsulated RFICs in a live body. The work could provide an approach to flexible LSI in biointegrated electronics such as an artificial retina and wireless body sensor networks.

Journal ArticleDOI
TL;DR: In this paper, a series of radio, optical, X-ray and gamma-ray observations of the BL Lac object S50716+714 were carried out between April 2007 and January 2011.
Abstract: We present the results of a series of radio, optical, X-ray and gamma-ray observations of the BL Lac object S50716+714 carried out between April 2007 and January 2011. The multi-frequency observations were obtained using several ground and space based facilities. The intense optical monitoring of the source reveals faster repetitive variations superimposed on a long-term variability trend at a time scale of ~350 days. Episodes of fast variability recur on time scales of ~ 60-70 days. The intense and simultaneous activity at optical and gamma-ray frequencies favors the SSC mechanism for the production of the high-energy emission. Two major low-peaking radio flares were observed during this high optical/gamma-ray activity period. The radio flares are characterized by a rising and a decaying stage and are in agreement with the formation of a shock and its evolution. We found that the evolution of the radio flares requires a geometrical variation in addition to intrinsic variations of the source. Different estimates yield a robust and self-consistent lower limits of \delta > 20 and equipartition magnetic field B_eq > 0.36 G. Causality arguments constrain the size of emission region \theta < 0.004 mas. We found a significant correlation between flux variations at radio frequencies with those at optical and gamma-rays. The optical/GeV flux variations lead the radio variability by ~65 days. The longer time delays between low-peaking radio outbursts and optical flares imply that optical flares are the precursors of radio ones. An orphan X-ray flare challenges the simple, one-zone emission models, rendering them too simple. Here we also describe the spectral energy distribution modeling of the source from simultaneous data taken through different activity periods.

Journal ArticleDOI
TL;DR: By combining the technique with the short-term stability provided by a remote, high-quality quartz oscillator, this system is potentially applicable to transcontinental optical-fiber time and frequency dissemination where the optical round-trip propagation time is significant.
Abstract: We demonstrate long-distance (≥100-km) synchronization of the phase of a radio-frequency reference over an optical-fiber network without needing to actively stabilize the optical path length Frequency mixing is used to achieve passive phase-conjugate cancellation of fiber-length fluctuations, ensuring that the phase difference between the reference and synchronized oscillators is independent of the link length The fractional radio-frequency-transfer stability through a 100-km "real-world" urban optical-fiber network is 6 × 10(-17) with an averaging time of 10(4) s Our compensation technique is robust, providing long-term stability superior to that of a hydrogen maser By combining our technique with the short-term stability provided by a remote, high-quality quartz oscillator, this system is potentially applicable to transcontinental optical-fiber time and frequency dissemination where the optical round-trip propagation time is significant

Journal ArticleDOI
TL;DR: In this article, the first detection with the Herschel observatory of a variable far-infrared source associated with the compact jets of the black hole transient GX 339−4 during the decay of its recent 2010-2011 outburst, after the transition to the hard state.
Abstract: Galactic black hole binaries produce powerful outflows which emit over almost the entire electromagnetic spectrum. Here, we report the first detection with the Herschel observatory of a variable far-infrared source associated with the compact jets of the black hole transient GX 339−4 during the decay of its recent 2010-2011 outburst, after the transition to the hard state. We also outline the results of very sensitive radio observations conducted with the Australia Telescope Compact Array, along with a series of near-infrared, optical (OIR) and X-ray observations, allowing for the first time the re-ignition of the compact jets to be observed over a wide range of wavelengths. The compact jets first turn on at radio frequencies with an optically thin spectrum that later evolves to an optically thick synchrotron emission. An OIR reflare is observed about 10 d after the onset of radio and hard X-ray emission, likely reflecting the necessary time to build up enough density, as well as to have acceleration (e.g. through shocks) along an extended region in the jets. The Herschel measurements are consistent with an extrapolation of the radio inverted power-law spectrum, but they highlight a more complex radio to OIR spectral energy distribution for the jets.