scispace - formally typeset
Search or ask a question

Showing papers on "Spin-½ published in 2020"


Journal ArticleDOI
15 Apr 2020-Nature
TL;DR: This work indicates that a spin-based quantum computer could be operated at increased temperatures in a simple pumped 4 He system (which provides cooling power orders of magnitude higher than that of dilution refrigerators), thus potentially enabling the integration of classical control electronics with the qubit array.
Abstract: Quantum computers are expected to outperform conventional computers in several important applications, from molecular simulation to search algorithms, once they can be scaled up to large numbers—typically millions—of quantum bits (qubits)1–3. For most solid-state qubit technologies—for example, those using superconducting circuits or semiconductor spins—scaling poses a considerable challenge because every additional qubit increases the heat generated, whereas the cooling power of dilution refrigerators is severely limited at their operating temperature (less than 100 millikelvin)4–6. Here we demonstrate the operation of a scalable silicon quantum processor unit cell comprising two qubits confined to quantum dots at about 1.5 kelvin. We achieve this by isolating the quantum dots from the electron reservoir, and then initializing and reading the qubits solely via tunnelling of electrons between the two quantum dots7–9. We coherently control the qubits using electrically driven spin resonance10,11 in isotopically enriched silicon12 28Si, attaining single-qubit gate fidelities of 98.6 per cent and a coherence time of 2 microseconds during ‘hot’ operation, comparable to those of spin qubits in natural silicon at millikelvin temperatures13–16. Furthermore, we show that the unit cell can be operated at magnetic fields as low as 0.1 tesla, corresponding to a qubit control frequency of 3.5 gigahertz, where the qubit energy is well below the thermal energy. The unit cell constitutes the core building block of a full-scale silicon quantum computer and satisfies layout constraints required by error-correction architectures8,17. Our work indicates that a spin-based quantum computer could be operated at increased temperatures in a simple pumped 4He system (which provides cooling power orders of magnitude higher than that of dilution refrigerators), thus potentially enabling the integration of classical control electronics with the qubit array18,19. A scalable silicon quantum processor unit cell made of two qubits confined to quantum dots operates at about 1.5 K, achieving 98.6% single-qubit gate fidelities and a 2 μs coherence time.

241 citations


Journal ArticleDOI
15 Apr 2020-Nature
TL;DR: The demonstration of ‘hot’ and universal quantum logic in a semiconductor platform paves the way for quantum integrated circuits that host both the quantum hardware and its control circuitry on the same chip, providing a scalable approach towards practical quantum information processing.
Abstract: Quantum computation requires many qubits that can be coherently controlled and coupled to each other1. Qubits that are defined using lithographic techniques have been suggested to enable the development of scalable quantum systems because they can be implemented using semiconductor fabrication technology2-5. However, leading solid-state approaches function only at temperatures below 100 millikelvin, where cooling power is extremely limited, and this severely affects the prospects of practical quantum computation. Recent studies of electron spins in silicon have made progress towards a platform that can be operated at higher temperatures by demonstrating long spin lifetimes6, gate-based spin readout7 and coherent single-spin control8. However, a high-temperature two-qubit logic gate has not yet been demonstrated. Here we show that silicon quantum dots can have sufficient thermal robustness to enable the execution of a universal gate set at temperatures greater than one kelvin. We obtain single-qubit control via electron spin resonance and readout using Pauli spin blockade. In addition, we show individual coherent control of two qubits and measure single-qubit fidelities of up to 99.3 per cent. We demonstrate the tunability of the exchange interaction between the two spins from 0.5 to 18 megahertz and use it to execute coherent two-qubit controlled rotations. The demonstration of 'hot' and universal quantum logic in a semiconductor platform paves the way for quantum integrated circuits that host both the quantum hardware and its control circuitry on the same chip, providing a scalable approach towards practical quantum information processing.

201 citations


Journal ArticleDOI
24 Jan 2020-Science
TL;DR: Using a superconducting qubit as a quantum sensor, a single magnon is detected in a millimeter-sized ferrimagnetic crystal with a quantum efficiency of up to 0.71, establishing the single-photon detector counterpart for magnonics.
Abstract: The recent development of hybrid systems based on superconducting circuits provides the possibility of engineering quantum sensors that exploit different degrees of freedom. Quantum magnonics, which aims to control and read out quanta of collective spin excitations in magnetically ordered systems, provides opportunities for advances in both the study of magnetism and the development of quantum technologies. Using a superconducting qubit as a quantum sensor, we report the detection of a single magnon in a millimeter-sized ferrimagnetic crystal with a quantum efficiency of up to 0.71. The detection is based on the entanglement between a magnetostatic mode and the qubit, followed by a single-shot measurement of the qubit state. This proof-of-principle experiment establishes the single-photon detector counterpart for magnonics.

195 citations


Journal ArticleDOI
06 Mar 2020-Science
TL;DR: A scalable analog quantum simulator of a U(1) gauge theory in one spatial dimension is proposed using interspecies spin-changing collisions in an atomic mixture to achieve gauge-invariant interactions between matter and gauge fields with spin- and species-independent trapping potentials.
Abstract: In the fundamental laws of physics, gauge fields mediate the interaction between charged particles. An example is the quantum theory of electrons interacting with the electromagnetic field, based on U(1) gauge symmetry. Solving such gauge theories is in general a hard problem for classical computational techniques. Although quantum computers suggest a way forward, large-scale digital quantum devices for complex simulations are difficult to build. We propose a scalable analog quantum simulator of a U(1) gauge theory in one spatial dimension. Using interspecies spin-changing collisions in an atomic mixture, we achieve gauge-invariant interactions between matter and gauge fields with spin- and species-independent trapping potentials. We experimentally realize the elementary building block as a key step toward a platform for quantum simulations of continuous gauge theories.

180 citations


Journal ArticleDOI
TL;DR: In this article, the authors proposed a state preparation algorithm for the variational quantum eigensolver (VQE), which is one of the most promising approaches for performing chemistry simulations using noisy intermediate-scale quantum processors.
Abstract: The variational quantum eigensolver is one of the most promising approaches for performing chemistry simulations using noisy intermediate-scale quantum (NISQ) processors. The efficiency of this algorithm depends crucially on the ability to prepare multi-qubit trial states on the quantum processor that either include, or at least closely approximate, the actual energy eigenstates of the problem being simulated while avoiding states that have little overlap with them. Symmetries play a central role in determining the best trial states. Here, we present efficient state preparation circuits that respect particle number, total spin, spin projection, and time-reversal symmetries. These circuits contain the minimal number of variational parameters needed to fully span the appropriate symmetry subspace dictated by the chemistry problem while avoiding all irrelevant sectors of Hilbert space. We show how to construct these circuits for arbitrary numbers of orbitals, electrons, and spin quantum numbers, and we provide explicit decompositions and gate counts in terms of standard gate sets in each case. We test our circuits in quantum simulations of the $${H}_{2}$$ and $$LiH$$ molecules and find that they outperform standard state preparation methods in terms of both accuracy and circuit depth.

166 citations


Journal ArticleDOI
23 Mar 2020-Nature
TL;DR: In this article, a single solid-state spin memory integrated in a nanophotonic diamond resonator is used to implement asynchronous photonic Bell-state measurements, which are a key component of quantum repeaters.
Abstract: The ability to communicate quantum information over long distances is of central importance in quantum science and engineering1. Although some applications of quantum communication such as secure quantum key distribution2,3 are already being successfully deployed4–7, their range is currently limited by photon losses and cannot be extended using straightforward measure-and-repeat strategies without compromising unconditional security8. Alternatively, quantum repeaters9, which utilize intermediate quantum memory nodes and error correction techniques, can extend the range of quantum channels. However, their implementation remains an outstanding challenge10–16, requiring a combination of efficient and high-fidelity quantum memories, gate operations, and measurements. Here we use a single solid-state spin memory integrated in a nanophotonic diamond resonator17–19 to implement asynchronous photonic Bell-state measurements, which are a key component of quantum repeaters. In a proof-of-principle experiment, we demonstrate high-fidelity operation that effectively enables quantum communication at a rate that surpasses the ideal loss-equivalent direct-transmission method while operating at megahertz clock speeds. These results represent a crucial step towards practical quantum repeaters and large-scale quantum networks20,21. A solid-state spin memory is used to demonstrate quantum repeater functionality, which has the potential to overcome photon losses involved in long-distance transmission of quantum information.

165 citations


Journal ArticleDOI
TL;DR: Modifying the electromagnetic environment around the ion can increase the strength and cyclicity of the optical transition by several orders of magnitude, enabling single-shot quantum nondemolition readout of the ion’s spin with 94.6% fidelity.
Abstract: Optically-interfaced spins in the solid state are a promising platform for quantum technologies. A crucial component of these systems is high-fidelity, projective measurement of the spin state. Here, we demonstrate single-shot spin readout of a single rare earth ion qubit, Er3+, which is attractive for its telecom-wavelength optical transition and compatibility with silicon nanophotonic circuits. In previous work with laser-cooled atoms and ions, and solid-state defects, spin readout is accomplished using fluorescence on an optical cycling transition; however, Er3+ and other rare earth ions generally lack strong cycling transitions. We demonstrate that modifying the electromagnetic environment around the ion can increase the strength and cyclicity of the optical transition by several orders of magnitude, enabling single-shot quantum nondemolition readout of the ion's spin with 94.6% fidelity. We use this readout to probe coherent dynamics and relaxation of the spin.

159 citations


Journal ArticleDOI
F. Borjans1, Xanthe Croot1, Xiao Mi1, Xiao Mi2, Michael Gullans1, Jason R. Petta1 
09 Jan 2020-Nature
TL;DR: In this paper, the authors demonstrate resonant microwave-mediated coupling between two electron spins that are physically separated by more than four millimetres, indicating that microwave-frequency photons may be used to generate long-range two-qubit gates between spatially separated spins.
Abstract: Nonlocal qubit interactions are a hallmark of advanced quantum information technologies1–5. The ability to transfer quantum states and generate entanglement over distances much larger than qubit length scales greatly increases connectivity and is an important step towards maximal parallelism and the implementation of two-qubit gates on arbitrary pairs of qubits6. Qubit-coupling schemes based on cavity quantum electrodynamics2,7,8 also offer the possibility of using high-quality-factor resonators as quantum memories3,9. Extending qubit interactions beyond the nearest neighbour is particularly beneficial for spin-based quantum computing architectures, which are limited by short-range exchange interactions10. Despite the rapidly maturing device technology for silicon spin qubits11–16, experimental progress towards achieving long-range spin–spin coupling has so far been restricted to interactions between individual spins and microwave photons17–20. Here we demonstrate resonant microwave-mediated coupling between two electron spins that are physically separated by more than four millimetres. An enhanced vacuum Rabi splitting is observed when both spins are tuned into resonance with the cavity, indicating a coherent interaction between the two spins and a cavity photon. Our results imply that microwave-frequency photons may be used to generate long-range two-qubit gates between spatially separated spins. Microwave-mediated coupling of electron spins separated by more than 4 mm is demonstrated, suggesting the possibility of using photons at microwave frequencies to create long-range two-qubit gates between distant spins.

148 citations


Journal ArticleDOI
29 Jan 2020
TL;DR: In this paper, a review of recent advances in hybrid super-semi quantum systems, which coherently couple superconducting cavities to semiconductor quantum dots, is presented.
Abstract: Light–matter interactions at the single-particle level have generally been explored in the context of atomic, molecular and optical physics. Recent advances motivated by quantum information science have made it possible to explore coherent interactions between photons trapped in superconducting cavities and superconducting qubits. In the context of quantum information, the study of coherent interactions between single charges and spins in semiconductors and photons trapped in superconducting cavities is very relevant, as the spin degree of freedom has a coherence time that can potentially exceed that of superconducting qubits, and cavity photons can serve to effectively overcome the limitation of short-range interaction inherent to spin qubits. Here, we review recent advances in hybrid ‘super–semi’ quantum systems, which coherently couple superconducting cavities to semiconductor quantum dots. We first present an overview of the physics governing the behaviour of superconducting cavities, semiconductor quantum dots and their modes of interaction. We then survey experimental progress in the field, focusing on recent demonstrations of cavity quantum electrodynamics in the strong-coupling regime with a single charge and a single spin. Finally, we broadly discuss promising avenues of future research, including the use of super–semi systems to investigate phenomena in condensed-matter physics. The integration of gate-defined quantum dots with superconducting resonators results in a hybrid architecture that holds promise for quantum information processing. This Review discusses recent experimental results in the field, including the achievement of strong coupling between single microwave photons and the charge and spin degrees of freedom, and examines the underlying physics.

138 citations


Journal ArticleDOI
26 Mar 2020-Nature
TL;DR: Scanning tunnelling microscopy and spectroscopy measurements show chiral edge states inside the superconducting gap of the recently discovered heavy-fermion superconductor UTe2, indicating the presence of chiral spin-triplet superconductivity.
Abstract: Spin-triplet superconductors are condensates of electron pairs with spin 1 and an odd-parity wavefunction1. An interesting manifestation of triplet pairing is the chiral p-wave state, which is topologically non-trivial and provides a natural platform for realizing Majorana edge modes2,3. However, triplet pairing is rare in solid-state systems and has not been unambiguously identified in any bulk compound so far. Given that pairing is usually mediated by ferromagnetic spin fluctuations, uranium-based heavy-fermion systems containing f-electron elements, which can harbour both strong correlations and magnetism, are considered ideal candidates for realizing spin-triplet superconductivity4. Here we present scanning tunnelling microscopy studies of the recently discovered heavy-fermion superconductor UTe2, which has a superconducting transition temperature of 1.6 kelvin5. We find signatures of coexisting Kondo effect and superconductivity that show competing spatial modulations within one unit cell. Scanning tunnelling spectroscopy at step edges reveals signatures of chiral in-gap states, which have been predicted to exist at the boundaries of topological superconductors. Combined with existing data that indicate triplet pairing in UTe2, the presence of chiral states suggests that UTe2 is a strong candidate for chiral-triplet topological superconductivity.

133 citations


Journal ArticleDOI
TL;DR: In this paper, a general method to calculate out-of-time-ordered correlators (OTOCs) of local operators in one-dimensional systems based on approximating Heisenberg operators as matrix product operators (MPOs) was proposed.
Abstract: Scrambling, a process in which quantum information spreads over a complex quantum system, becoming inaccessible to simple probes, occurs in generic chaotic quantum many-body systems, ranging from spin chains to metals and even to black holes. Scrambling can be measured using out-of-time-ordered correlators (OTOCs), which are closely tied to the growth of Heisenberg operators. We present a general method to calculate OTOCs of local operators in one-dimensional systems based on approximating Heisenberg operators as matrix product operators (MPOs). Contrary to the common belief that such tensor network methods work only at early times, we show that the entire early growth region of the OTOC can be captured using an MPO approximation with modest bond dimension. We analytically establish the goodness of the approximation by showing that, if an appropriate OTOC is close to its initial value, then the associated Heisenberg operator has low entanglement across a given cut. We use the method to study scrambling in a chaotic spin chain with $$201$$ sites. On the basis of these data and previous results, we conjecture a universal form for the dynamics of the OTOC near the wavefront. We show that this form collapses the chaotic spin chain data over more than 15 orders of magnitude. A general method is proposed to calculate the out-of-time-ordered correlators (OTOCs) in one-dimensional systems. Motivated by the results obtained from its application to various systems, a universal form for the dynamics of OTOCs is conjectured.

Journal ArticleDOI
TL;DR: A microscopic theory for collective excitations of quantum anomalous Hall ferromagnets (QAHF) in twisted bilayer graphene is presented, implying that the valley polarized state is more favorable compared to the valley coherent state.
Abstract: We present a microscopic theory for collective excitations of quantum anomalous Hall ferromagnets (QAHF) in twisted bilayer graphene. We calculate the spin magnon and valley magnon spectra by solving Bethe-Salpeter equations and verify the stability of QAHF. We extract the spin stiffness from the gapless spin wave dispersion and estimate the energy cost of a skyrmion-antiskyrmion pair, which is found to be comparable in energy with the Hartree-Fock gap. The valley wave mode is gapped, implying that the valley polarized state is more favorable compared to the valley coherent state. Using a nonlinear sigma model, we estimate the valley ordering temperature, which is considerably reduced from the mean-field transition temperature due to thermal excitations of valley waves.

Journal Article
TL;DR: Pure spin currents are simultaneously generated and detected electrically through sub-terahertz magnons in the antiferromagnetic insulator Cr 2 O 3 , demonstrating the potential of magnon excitations in antiferromeagnets for high-frequency spintronic devices.
Abstract: Spin dynamics in antiferromagnets has much shorter timescales than in ferromagnets, offering attractive properties for potential applications in ultrafast devices1–3. However, spin-current generation via antiferromagnetic resonance and simultaneous electrical detection by the inverse spin Hall effect in heavy metals have not yet been explicitly demonstrated4–6. Here we report sub-terahertz spin pumping in heterostructures of a uniaxial antiferromagnetic Cr2O3 crystal and a heavy metal (Pt or Ta in its β phase). At 0.240 terahertz, the antiferromagnetic resonance in Cr2O3 occurs at about 2.7 tesla, which excites only right-handed magnons. In the spin-canting state, another resonance occurs at 10.5 tesla from the precession of induced magnetic moments. Both resonances generate pure spin currents in the heterostructures, which are detected by the heavy metal as peaks or dips in the open-circuit voltage. The pure-spin-current nature of the electrically detected signals is unambiguously confirmed by the reversal of the voltage polarity observed under two conditions: when switching the detector metal from Pt to Ta, reversing the sign of the spin Hall angle7–9, and when flipping the magnetic-field direction, reversing the magnon chirality4,5. The temperature dependence of the electrical signals at both resonances suggests that the spin current contains both coherent and incoherent magnon contributions, which is further confirmed by measurements of the spin Seebeck effect and is well described by a phenomenological theory. These findings reveal the unique characteristics of magnon excitations in antiferromagnets and their distinctive roles in spin–charge conversion in the high-frequency regime. Pure spin currents are simultaneously generated and detected electrically through sub-terahertz magnons in the antiferromagnetic insulator Cr2O3, demonstrating the potential of magnon excitations in antiferromagnets for high-frequency spintronic devices.

Journal ArticleDOI
TL;DR: In this article, the authors uncover a new exactly solvable example of many-body scars in a spin-textonehalf{} model and show that the scarred dynamics in this model evades such an interpretation.
Abstract: Strongly interacting systems with quantum many-body scars exhibit persistent fidelity oscillations when prepared in a certain class of initial states, but otherwise undergo ergodic dynamics. Previous examples of scars have interpreted the characteristic periodic dynamics in terms of the precession of a macroscopic SU(2) spin in an effective magnetic field. Here, the authors uncover a new exactly solvable example of many-body scars in a spin-\textonehalf{} model and show that the scarred dynamics in this model evades such an interpretation. This unusual coherent dynamics arises due to an emergent kinetic constraint that endows the time-evolving many-body state with constant area-law entanglement. The model studied in this work is relevant to experiments on Rydberg-atom quantum simulators in the antiblockade regime.

Journal ArticleDOI
TL;DR: In this article, a boundary-to-bound dictionary between gravitational scattering data and observables for bound states of non-spinning bodies was introduced, and the radial and azimuthal frequencies and redshift variable were derived for all orders in the Post-Minkowskian expansion.
Abstract: We recently introduced in [9] a boundary-to-bound dictionary between gravitational scattering data and observables for bound states of non-spinning bodies. In this paper, we elaborate further on this holographic map. We start by deriving the following — remarkably simple — formula relating the periastron advance to the scattering angle: $$ \Delta \Phi \left(J,\mathcal{E}\right)=\upchi \left(J,\mathcal{E}\right)+\upchi \left(-J,\mathcal{E}\right) $$ , via analytic continuation in angular momentum and binding energy. Using explicit expressions from [9], we confirm its validity to all orders in the Post-Minkowskian (PM) expansion. Furthermore, we reconstruct the radial action for the bound state directly from the knowledge of the scattering angle. The radial action enables us to write compact expressions for dynamical invariants in terms of the deflection angle to all PM orders, which can also be written as a function of the PM-expanded amplitude. As an example, we reproduce our result in [9] for the periastron advance, and compute the radial and azimuthal frequencies and redshift variable to two-loops. Agreement is found in the overlap between PM and Post-Newtonian (PN) schemes. Last but not least, we initiate the study of our dictionary including spin. We demonstrate that the same relation between deflection angle and periastron advance applies for aligned-spin contributions, with J the (canonical) total angular momentum. Explicit checks are performed to display perfect agreement using state-of-the-art PN results in the literature. Using the map between test- and two-body dynamics, we also compute the periastron advance up to quadratic order in spin, to one-loop and to all orders in velocity. We conclude with a discussion on the generalized ‘impetus formula’ for spinning bodies and black holes as ‘elementary particles’. Our findings here and in [9] imply that the deflection angle already encodes vast amount of physical information for bound orbits, encouraging independent derivations using numerical and/or self-force methodologies.

Journal ArticleDOI
22 Jul 2020-Nature
TL;DR: Using the spin precession of Bose-condensed 87Rb atoms as a clock, direct measurements are made of the time required for Rb atoms to quantum tunnel through a classically impenetrable barrier.
Abstract: Tunnelling is one of the most characteristic phenomena of quantum physics, underlying processes such as photosynthesis and nuclear fusion, as well as devices ranging from superconducting quantum interference device (SQUID) magnetometers to superconducting qubits for quantum computers. The question of how long a particle takes to tunnel through a barrier, however, has remained contentious since the first attempts to calculate it1. It is now well understood that the group delay2—the arrival time of the peak of the transmitted wavepacket at the far side of the barrier—can be smaller than the barrier thickness divided by the speed of light, without violating causality. This has been confirmed by many experiments3–6, and a recent work even claims that tunnelling may take no time at all7. There have also been efforts to identify a different timescale that would better describe how long a given particle spends in the barrier region8–10. Here we directly measure such a time by studying Bose-condensed 87Rb atoms tunnelling through a 1.3-micrometre-thick optical barrier. By localizing a pseudo-magnetic field inside the barrier, we use the spin precession of the atoms as a clock to measure the time that they require to cross the classically forbidden region. We study the dependence of the traversal time on the incident energy, finding a value of 0.61(7) milliseconds at the lowest energy for which tunnelling is observable. This experiment lays the groundwork for addressing fundamental questions about history in quantum mechanics: for instance, what we can learn about where a particle was at earlier times by observing where it is now11–13. Using the spin precession of Bose-condensed 87Rb atoms as a clock, direct measurements are made of the time required for Rb atoms to quantum tunnel through a classically impenetrable barrier.

Journal ArticleDOI
TL;DR: This work identifies a number of nontrivial magnetic phases, explains their microscopic nature, and demonstrates that one of them hosts a large topological Hall effect (THE), and proposes a previously unidentified fluctuation-driven mechanism, which leads to the THE at elevated temperatures.
Abstract: Identification, understanding, and manipulation of novel magnetic textures are essential for the discovery of new quantum materials for future spin-based electronic devices. In particular, materials that manifest a large response to external stimuli such as a magnetic field are subject to intense investigation. Here, we study the kagome-net magnet YMn6Sn6 by magnetometry, transport, and neutron diffraction measurements combined with first-principles calculations. We identify a number of nontrivial magnetic phases, explain their microscopic nature, and demonstrate that one of them hosts a large topological Hall effect (THE). We propose a previously unidentified fluctuation-driven mechanism, which leads to the THE at elevated temperatures. This interesting physics comes from parametrically frustrated interplanar exchange interactions that trigger strong magnetic fluctuations. Our results pave a path to chiral spin textures, promising for novel spintronics.

Journal ArticleDOI
02 Mar 2020-Nature
TL;DR: This demonstration of Nagaoka ferromagnetism highlights that quantum simulators can be used to study physical phenomena that have not yet been observed in any experimental system and constitutes an important step towards large-scale quantum dot simulators of correlated electron systems.
Abstract: Engineered, highly controllable quantum systems are promising simulators of emergent physics beyond the simulation capabilities of classical computers1. An important problem in many-body physics is itinerant magnetism, which originates purely from long-range interactions of free electrons and whose existence in real systems has been debated for decades2,3. Here we use a quantum simulator consisting of a four-electron-site square plaquette of quantum dots4 to demonstrate Nagaoka ferromagnetism5. This form of itinerant magnetism has been rigorously studied theoretically6–9 but has remained unattainable in experiments. We load the plaquette with three electrons and demonstrate the predicted emergence of spontaneous ferromagnetic correlations through pairwise measurements of spin. We find that the ferromagnetic ground state is remarkably robust to engineered disorder in the on-site potentials and we can induce a transition to the low-spin state by changing the plaquette topology to an open chain. This demonstration of Nagaoka ferromagnetism highlights that quantum simulators can be used to study physical phenomena that have not yet been observed in any experimental system. The work also constitutes an important step towards large-scale quantum dot simulators of correlated electron systems.

Journal ArticleDOI
TL;DR: Experimental evidence is reported that an easy-plane insulating AFM, an α-Fe 2 O 3 thin film, can efficiently transmit spins over micrometre distances and can realize a bi-stable spin-current switch with a 100% on/off ratio under zero remnant magnetic field.
Abstract: Antiferromagnets (AFMs) possess great potential in spintronics because of their immunity to external magnetic disturbance, the absence of a stray field or the resonance in the terahertz range1,2. The coupling of insulating AFMs to spin–orbit materials3–7 enables spin transport via AFM magnons. In particular, spin transmission over several micrometres occurs in some AFMs with easy-axis anisotropy8,9. Easy-plane AFMs with two orthogonal, linearly polarized magnon eigenmodes own unique advantages for low-energy control of ultrafast magnetic dynamics2. However, it is commonly conceived that these magnon modes are less likely to transmit spins because of their vanishing angular momentum9–11. Here we report experimental evidence that an easy-plane insulating AFM, an α-Fe2O3 thin film, can efficiently transmit spins over micrometre distances. The spin decay length shows an unconventional temperature dependence that cannot be captured considering solely thermal magnon scatterings. We interpret our observations in terms of an interference of two linearly polarized, propagating magnons in analogy to the birefringence effect in optics. Furthermore, our devices can realize a bi-stable spin-current switch with a 100% on/off ratio under zero remnant magnetic field. These findings provide additional tools for non-volatile, low-field control of spin transport in AFM systems. Easy-plane antiferromagnet materials promise low-energy control of ultrafast magnetic dynamics in future spintronics applications, but host magnons with vanishing angular momentum, which makes spin transport via magnons unlikely. Through interference of two linearly polarized propagating magnons, spin transport over micrometre distances is yet possible.

Journal ArticleDOI
13 May 2020-Nature
TL;DR: A squeezed collective state of 1011 rubidium atoms is generated by quantum non-demolition measurements, and the accuracy of the estimation of their collective spin is improved using past quantum state retrodiction.
Abstract: The measurement sensitivity of quantum probes using N uncorrelated particles is restricted by the standard quantum limit1, which is proportional to $$1/\sqrt{N}$$. This limit, however, can be overcome by exploiting quantum entangled states, such as spin-squeezed states2. Here we report the measurement-based generation of a quantum state that exceeds the standard quantum limit for probing the collective spin of 1011 rubidium atoms contained in a macroscopic vapour cell. The state is prepared and verified by sequences of stroboscopic quantum non-demolition (QND) measurements. We then apply the theory of past quantum states3,4 to obtain spin state information from the outcomes of both earlier and later QND measurements. Rather than establishing a physically squeezed state in the laboratory, the past quantum state represents the combined system information from these prediction and retrodiction measurements. This information is equivalent to a noise reduction of 5.6 decibels and a metrologically relevant squeezing of 4.5 decibels relative to the coherent spin state. The past quantum state yields tighter constraints on the spin component than those obtained by conventional QND measurements. Our measurement uses 1,000 times more atoms than previous squeezing experiments5–10, with a corresponding angular variance of the squeezed collective spin of 4.6 × 10−13 radians squared. Although this work is rooted in the foundational theory of quantum measurements, it may find practical use in quantum metrology and quantum parameter estimation, as we demonstrate by applying our protocol to quantum enhanced atomic magnetometry. A squeezed collective state of 1011 rubidium atoms is generated by quantum non-demolition measurements, and the accuracy of the estimation of their collective spin is improved using past quantum state retrodiction.

Journal ArticleDOI
TL;DR: In this article, the authors review the recent developments to realize electric and thermal generation, manipulation, detection, and control of pure spin information in insulators and propose a new pure spin-based information and communication technologies.
Abstract: Spin insulatronics covers efforts to generate, detect, control, and utilize high-fidelity pure spin currents and excitations inside magnetic insulators. Ultimately, the new findings may open doors for pure spin-based information and communication technologies. The aim is to replace moving charges with dynamical entities that utilize low-dissipation coherent and incoherent spin excitations in antiferromagnetic and ferromagnetic insulators. The ambition is that the new pure spin-based system will suffer reduced energy losses and operate at high frequencies. In magnetic insulators, there are no mobile charge carriers that can dissipate energy. Integration with conventional electronics is possible via interface exchange interactions and spin-orbit couplings. In this way, the free electrons in the metals couple to the localized spins in the magnetic insulators. In turn, these links facilitate spin-transfer torques and spin-orbit torques across metal-insulator interfaces and the associated phenomena of spin-pumping and charge-pumping. The interface couplings also connect the electron motion inside the metals with the spin fluctuations inside the magnetic insulators. These features imply that the system can enable unprecedented control of correlations resulting from the electron-magnon interactions. We review recent developments to realize electric and thermal generation, manipulation, detection, and control of pure spin information in insulators.

Journal ArticleDOI
TL;DR: In this paper, a brief overview on recent advances in developing optically active spin qubits in SiC and discuss challenges in applications for quantum repeaters and possible solutions is discussed.
Abstract: In current long-distance communications, classical information carried by large numbers of particles is intrinsically robust to some transmission losses but can, therefore, be eavesdropped without notice. On the other hand, quantum communications can provide provable privacy and could make use of entanglement swapping via quantum repeaters to mitigate transmission losses. To this end, considerable effort has been spent over the last few decades toward developing quantum repeaters that combine long-lived quantum memories with a source of indistinguishable single photons. Multiple candidate optical spin qubits in the solid state, including quantum dots, rare-earth ions, and color centers in diamond and silicon carbide (SiC), have been developed. In this perspective, we give a brief overview on recent advances in developing optically active spin qubits in SiC and discuss challenges in applications for quantum repeaters and possible solutions. In view of the development of different material platforms, the perspective of SiC spin qubits in scalable quantum networks is discussed.

Journal ArticleDOI
Zhen-Qian Yang1, Zengkai Shao1, Hua-Zhou Chen1, Xin-Rui Mao1, Ren-Min Ma1 
TL;DR: A topological vortex laser that relies on a novel feature in non-Hermitian topological photonic systems is demonstrated and the out-of-plane radiation feature of spin-momentum locking is reported.
Abstract: Spin-momentum locking is a direct consequence of bulk topological order and provides a basic concept to control a carrier's spin and charge flow for new exotic phenomena in condensed matter physics. However, up to date the research on spin-momentum locking solely focuses on its in-plane transport properties. Here, we report an emerging out-of-plane radiation feature of spin-momentum locking in a non-Hermitian topological photonic system and demonstrate a high performance topological vortex laser based on it. We find that the gain saturation effect lifts the degeneracy of the paired counterpropagating spin-momentum-locked edge modes enabling lasing from a single topological edge mode. The near-field spin and orbital angular momentum of the topological edge mode lasing has a one-to-one far-field radiation correspondence. The methodology of probing the near-field topology feature by far-field lasing emission can be used to study other exotic phenomena. The device can lead to applications in superresolution imaging, optical tweezers, free-space optical sensing, and communication.

Journal ArticleDOI
TL;DR: The experimental findings are fully supported by time-dependent density functional theory simulations and suggest the possibility of coherently controlling spin dynamics on subfemtosecond time scales, i.e., the birth of the research area of attomagnetism.
Abstract: The vision of using light to manipulate electronic and spin excitations in materials on their fundamental time and length scales requires new approaches in experiment and theory to observe and understand these excitations. The ultimate speed limit for all-optical manipulation requires control schemes for which the electronic or magnetic subsystems of the materials are coherently manipulated on the time scale of the laser excitation pulse. In our work, we provide experimental evidence of such a direct, ultrafast, and coherent spin transfer between two magnetic subsystems of an alloy of Fe and Ni. Our experimental findings are fully supported by time-dependent density functional theory simulations and, hence, suggest the possibility of coherently controlling spin dynamics on subfemtosecond time scales, i.e., the birth of the research area of attomagnetism.

Journal ArticleDOI
TL;DR: In this paper, the authors investigated a famous model of nonlinear sciences namely (2 + 1)-dimensional nonlinear spin dynamics of Heisenberg ferromagnetic spin chains (HFSC) model for the evaluation of the (1 − 1)-approximation.
Abstract: In this paper, we will investigate a famous model of nonlinear sciences namely (2 + 1)-dimensional nonlinear spin dynamics of Heisenberg ferromagnetic spin chains (HFSC) model for the evaluation of...

Posted ContentDOI
04 Dec 2020
TL;DR: Li et al. as mentioned in this paper proposed a method to combine the state-of-the-art of surface physics and Department of Surface Physics at Shanghai State Key Laboratory of Functional Materials for Informatics (SCLFIIN) and the Department of Opto-Electronic Functional Materials and Micro-Nano Devices (OEM-NVDM) at Shanghai Institute of Microsystem and Information Technology (SIMIT).
Abstract: Man Li,1 Qi Wang,1 Guangwei Wang,2 Zhihong Yuan,2 Wenhua Song,1 Rui Lou,3, 4, 5 Zhengtai Liu,6 Yaobo Huang,7 Zhonghao Liu,6, 8, ∗ Hechang Lei,1, † Zhiping Yin,2, ‡ and Shancai Wang1, § 1Department of Physics and Beijing Key Laboratory of Opto-Electronic Functional Materials&Micro-Nano Devices, Renmin University of China, Beijing 100872, China 2Department of Physics and Center for Advanced Quantum Studies, Beijing Normal University, Beijing 100875, China 3School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, China 4State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433, China 5Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China 6State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China 7Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China 8College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China

Journal ArticleDOI
TL;DR: The authors demonstrate the coherent and non-reciprocal propagation of spin excitations along skyrmion strings for the chiral-lattice magnet Cu 2 OSeO 3 over a distance exceeding 50 μm, demonstrating the excellent long-range ordered nature of the skyrnion-string structure.
Abstract: Magnetic skyrmions, topological solitons characterized by a two-dimensional swirling spin texture, have recently attracted attention as stable particle-like objects. In a three-dimensional system, a skyrmion can extend in the third dimension forming a robust and flexible string structure, whose unique topology and symmetry are anticipated to host nontrivial functional responses. Here we experimentally demonstrate the coherent propagation of spin excitations along skyrmion strings for the chiral-lattice magnet Cu2OSeO3. We find that this propagation is directionally non-reciprocal and the degree of non-reciprocity, as well as group velocity and decay length, are strongly dependent on the character of the excitation modes. These spin excitations can propagate over a distance exceeding 50 μm, demonstrating the excellent long-range ordered nature of the skyrmion-string structure. Our combined experimental and theoretical analyses offer a comprehensive account of the propagation dynamics of skyrmion-string excitations and suggest the possibility of unidirectional information transfer along such topologically protected strings. The propagation dynamics of skyrmions in three dimensions have attracted increasing attention. Here, the authors demonstrate the coherent and non-reciprocal propagation of spin excitations along skyrmion strings for the chiral-lattice magnet Cu2OSeO3 over a distance exceeding 50 μm.

Journal ArticleDOI
TL;DR: In this paper, the authors show that the mass and spin of primordial black holes are correlated in a redshift-dependent fashion, in particular primordial binary black holes with masses below ǫ(30)M· are likely non-spinning at any redshift, whereas heavier black holes can be nearly extremal up to redshift z∼10.
Abstract: Primordial black holes in the mass range of ground-based gravitational-wave detectors can comprise a significant fraction of the dark matter. Mass and spin measurements from coalescences can be used to distinguish between an astrophysical or a primordial origin of the binary black holes. In standard scenarios the spin of primordial black holes is very small at formation. However, the mass and spin can evolve through the cosmic history due to accretion. We show that the mass and spin of primordial black holes are correlated in a redshift-dependent fashion, in particular primordial black holes with masses below 𝒪(30)M· are likely non-spinning at any redshift, whereas heavier black holes can be nearly extremal up to redshift z∼10. The dependence of the mass and spin distributions on the redshift can be probed with future detectors such as the Einstein Telescope. The mass and spin evolution affect the gravitational waveform parameters, in particular the distribution of the final mass and spin of the merger remnant, and that of the effective spin of the binary. We argue that, compared to the astrophysical-formation scenario, a primordial origin of black hole binaries might better explain the spin distribution of merger events detected by LIGO-Virgo, in which the effective spin parameter of the binary is compatible to zero except possibly for few high-mass events. Upcoming results from LIGO-Virgo third observation run might reinforce or weaken these predictions.


Journal ArticleDOI
TL;DR: This MPE revealed in the graphene/CrBr3 van der Waals heterostructures provides a solid physics basis and key functionality for next-generation 2D spin logic and memory devices.
Abstract: 2D van der Waals heterostructures serve as a promising platform to exploit various physical phenomena in a diverse range of novel spintronic device applications. Efficient spin injection is the prerequisite for these devices. The recent discovery of magnetic 2D materials leads to the possibility of fully 2D van der Waals spintronics devices by implementing spin injection through the magnetic proximity effect (MPE). Here, the investigation of MPE in 2D graphene/CrBr3 van der Waals heterostructures is reported, which is probed by the Zeeman spin Hall effect through non-local measurements. Quantitative estimation of the Zeeman splitting field demonstrates a significant MPE field even in a low magnetic field. Furthermore, the observed anomalous longitudinal resistance changes at the Dirac point RXX,D with increasing magnetic field near ν = 0 may be attributed to the MPE-induced new ground state phases. This MPE revealed in the graphene/CrBr3 van der Waals heterostructures therefore provides a solid physics basis and key functionality for next-generation 2D spin logic and memory devices.