scispace - formally typeset
Search or ask a question

Showing papers on "Temporal cortex published in 2013"


Journal ArticleDOI
TL;DR: It is shown that the acoustic envelopes of sentences contain most power between 4 and 7 Hz and that it is in this frequency band that phase locking between neural activity and envelopes is strongest, suggesting a biological framework for speech comprehension in which acoustic and linguistic cues reciprocally aid in stimulus prediction.
Abstract: A growing body of evidence shows that ongoing oscillations in auditory cortex modulate their phase to match the rhythm of temporally regular acoustic stimuli, increasing sensitivity to relevant environmental cues and improving detection accuracy. In the current study, we test the hypothesis that nonsensory information provided by linguistic content enhances phase-locked responses to intelligible speech in the human brain. Sixteen adults listened to meaningful sentences while we recorded neural activity using magnetoencephalography. Stimuli were processed using a noise-vocoding technique to vary intelligibility while keeping the temporal acoustic envelope consistent. We show that the acoustic envelopes of sentences contain most power between 4 and 7 Hz and that it is in this frequency band that phase locking between neural activity and envelopes is strongest. Bilateral oscillatory neural activity phase-locked to unintelligible speech, but this cerebro-acoustic phase locking was enhanced when speech was intelligible. This enhanced phase locking was left lateralized and localized to left temporal cortex. Together, our results demonstrate that entrainment to connected speech does not only depend on acoustic characteristics, but is also affected by listeners’ ability to extract linguistic information. This suggests a biological framework for speech comprehension in which acoustic and linguistic cues reciprocally aid in stimulus prediction.

501 citations


Journal ArticleDOI
TL;DR: In this paper, the authors proposed a neural language network with at least two dorsal and two ventral pathways connecting prefrontal and temporal language-relevant regions based on functional brain imaging studies, these pathways' language functions can be assigned indirectly Dorsally, one pathway connecting the temporal cortex (TC) and premotor cortex supports speech repetition, another one connecting the TC and posterior Broca's area supports complex syntactic processes Ventrally, the uncinate fascile and the inferior fronto-occipital fascile subserve semantic and basic syntactic process

426 citations


Journal ArticleDOI
TL;DR: A formal meta-analysis of studies that contrasted semantic tasks with high > low executive requirements to determine whether cortical regions beyond the left pFC show the same response profile to executive semantic demands revealed substantial overlap between the two sets of contrasts within left ventral pFC.
Abstract: Semantic cognition requires a combination of semantic representations and executive control processes to direct activation in a task- and time-appropriate fashion [Jefferies, E., & Lambon Ralph, M. A. Semantic impairment in stroke aphasia versus semantic dementia: A case-series comparison. Brain, 129, 2132-2147, 2006]. We undertook a formal meta-analysis to investigate which regions within the large-scale semantic network are specifically associated with the executive component of semantic cognition. Previous studies have described in detail the role of left ventral pFC in semantic regulation. We examined 53 studies that contrasted semantic tasks with high > low executive requirements to determine whether cortical regions beyond the left pFC show the same response profile to executive semantic demands. Our findings revealed that right pFC, posterior middle temporal gyrus (pMTG) and dorsal angular gyrus (bordering intraparietal sulcus) were also consistently recruited by executively demanding semantic tasks, demonstrating patterns of activation that were highly similar to the left ventral pFC. These regions overlap with the lesions in aphasic patients who exhibit multimodal semantic impairment because of impaired regulatory control (semantic aphasia)-providing important convergence between functional neuroimaging and neuropsychological studies of semantic cognition. Activation in dorsal angular gyrus and left ventral pFC was consistent across all types of executive semantic manipulation, regardless of whether the task was receptive or expressive, whereas pMTG activation was only observed for manipulation of control demands within receptive tasks. Second, we contrasted executively demanding tasks tapping semantics and phonology. Our findings revealed substantial overlap between the two sets of contrasts within left ventral pFC, suggesting this region underpins domain-general control mechanisms. In contrast, we observed relative specialization for semantic control within pMTG as well as the most ventral aspects of left pFC (BA 47), consistent with our proposal of a distributed network underpinning semantic control.

412 citations


Journal ArticleDOI
TL;DR: The stationarity of patterns of activity in the brain that encode object category information and show these patterns vary over time are examined, suggesting the brain might use flexible time varying codes to represent visual object categories.
Abstract: Human object recognition is remarkably efficient. In recent years, significant advancements have been made in our understanding of how the brain represents visual objects and organizes them into categories. Recent studies using pattern analyses methods have characterized a representational space of objects in human and primate inferior temporal cortex in which object exemplars are discriminable and cluster according to category (e.g., faces and bodies). In the present study we examined how category structure in object representations emerges in the first 1000 ms of visual processing. In the study, participants viewed 24 object exemplars with a planned categorical structure comprised of four levels ranging from highly specific (individual exemplars) to highly abstract (animate vs. inanimate), while their brain activity was recorded with magnetoencephalography (MEG). We used a sliding time window decoding approach to decode the exemplar and the exemplar's category that participants were viewing on a moment-to-moment basis. We found exemplar and category membership could be decoded from the neuromagnetic recordings shortly after stimulus onset (<100 ms) with peak decodability following thereafter. Latencies for peak decodability varied systematically with the level of category abstraction with more abstract categories emerging later, indicating that the brain hierarchically constructs category representations. In addition, we examined the stationarity of patterns of activity in the brain that encode object category information and show these patterns vary over time, suggesting the brain might use flexible time varying codes to represent visual object categories.

410 citations


Journal ArticleDOI
TL;DR: Regression analysis between magnetic susceptibility and R(2)(*) values of WM and GM structures suggested that variations in myelin content cause the overall contrast between gray and white matter on susceptibility maps and that both R( 2)(*) and susceptibility values provide linear measures for iron content in GM.

400 citations


Journal ArticleDOI
TL;DR: This work links hyperconnectivity of DMN-related circuits to the core social deficits in young children with ASD and highlights fundamental aspects of posteromedial cortex heterogeneity.

303 citations


Journal ArticleDOI
TL;DR: It is proposed that a brain region can be considered to represent amodal conceptual object knowledge if it is supramodal and plays a role in distinguishing among the conceptual representations of different objects.
Abstract: To what extent do the brain regions implicated in semantic processing contribute to the representation of amodal conceptual content rather than modality-specific mechanisms or mechanisms of semantic access and manipulation? Here, we propose that a brain region can be considered to represent amodal conceptual object knowledge if it is supramodal and plays a role in distinguishing among the conceptual representations of different objects. In an fMRI study, human participants made category typicality judgments about pictured objects or their names drawn from five different categories. Crossmodal multivariate pattern analysis revealed a network of six left-lateralized regions largely outside of category-selective visual cortex that showed a supramodal representation of object categories. These were located in the posterior middle/inferior temporal gyrus (pMTG/ITG), angular gyrus, ventral temporal cortex, posterior cingulate/precuneus (PC), and lateral and dorsomedial prefrontal cortex. Representational similarity analysis within these regions determined that the similarity between category-specific patterns of neural activity in the pMTG/ITG and the PC was consistent with the semantic similarity between these categories. This finding supports the PC and pMTG/ITG as candidate regions for the amodal representation of the conceptual properties of objects.

230 citations


Journal ArticleDOI
TL;DR: These results show that IT comprises parallel, multi-stage processing networks subject to one organizing principle, and that color and face selectivity increased for more anterior regions, indicative of a broad hierarchical arrangement.
Abstract: Visual-object processing culminates in inferior temporal cortex (IT). To assess the organization of IT, we measured functional magnetic resonance imaging responses in alert monkeys to achromatic images (faces, fruit, bodies and places) and colored gratings. IT contained multiple color-biased regions, which were typically ventral to face patches and yoked to them, spaced regularly at four locations predicted by known anatomy. Color and face selectivity increased for more anterior regions, indicative of a broad hierarchical arrangement. Responses to non-face shapes were found across IT, but were stronger outside color-biased regions and face patches, consistent with multiple parallel streams. IT also contained multiple coarse eccentricity maps: face patches overlapped central representations, color-biased regions spanned mid-peripheral representations and place-biased regions overlapped peripheral representations. These results show that IT comprises parallel, multi-stage processing networks subject to one organizing principle.

214 citations


Journal ArticleDOI
TL;DR: Whole-cortex analyses identified regions of interest (ROIs) of cortical atrophy in aging and in AD, and found that the processes of aging and AD have both differential and partially overlapping effects on specific regions of the cerebral cortex.

206 citations


Journal ArticleDOI
01 Nov 2013-Cortex
TL;DR: This meta-analysis provides a description of the cerebral network of handwriting as revealed by various types of neuroimaging experiments and confirms the crucial involvement of the left frontal and superior parietal regions.

192 citations


Journal ArticleDOI
01 Mar 2013-Cortex
TL;DR: These findings support the notion that a large network in left peri-Sylvian cortex supports picture naming, but that the left mid-posterior MTG and underlying white matter play a critical role in the core ability to retrieve a name associated with an object or picture.

Journal ArticleDOI
TL;DR: A new model of high-level visual cortex consisting of ventral, lateral, and dorsal components, where multimodal processing related to vision, action, haptics, and language converges in the lateral pathway is concluded.
Abstract: Neurophysiology and optical imaging studies in monkeys and functional magnetic resonance imaging (fMRI) studies in both monkeys and humans have localized clustered neural responses in inferotemporal cortex selective for images of biologically relevant categories, such as faces and limbs. Using higher resolution (1.5 mm voxels) fMRI scanning methods than past studies (3–5 mm voxels), we recently reported a network of multiple face- and limb-selective regions that neighbor one another in human ventral temporal cortex (Weiner and Grill-Spector, Neuroimage, 52(4):1559–1573, 2010) and lateral occipitotemporal cortex (Weiner and Grill-Spector, Neuroimage, 56(4):2183–2199, 2011). Here, we expand on three basic organization principles of high-level visual cortex revealed by these findings: (1) consistency in the anatomical location of functional regions, (2) preserved spatial relationship among functional regions, and (3) a topographic organization of face- and limb-selective regions in adjacent and alternating clusters. We highlight the implications of this structure in comparing functional brain organization between typical and atypical populations. We conclude with a new model of high-level visual cortex consisting of ventral, lateral, and dorsal components, where multimodal processing related to vision, action, haptics, and language converges in the lateral pathway. Electronic supplementary material The online version of this article (doi:10.1007/s00426-011-0392-x) contains supplementary material, which is available to authorized users.

Journal ArticleDOI
TL;DR: It is shown that population activity in rat auditory cortex is composed of transient 50–100 ms packets of spiking activity that occur irregularly during silence and sustained tone stimuli, but reliably at tone onset, and suggested that such packets reflect the sporadic opening of a “gate” that allows auditory cortex to broadcast a representation of external sounds to other brain regions.
Abstract: The activity of neural populations is determined not only by sensory inputs but also by internally generated patterns. During quiet wakefulness, the brain produces spontaneous firing events that can spread over large areas of cortex and have been suggested to underlie processes such as memory recall and consolidation. Here we demonstrate a different role for spontaneous activity in sensory cortex: gating of sensory inputs. We show that population activity in rat auditory cortex is composed of transient 50–100 ms packets of spiking activity that occur irregularly during silence and sustained tone stimuli, but reliably at tone onset. Population activity within these packets had broadly consistent spatiotemporal structure, but the rate and also precise relative timing of action potentials varied between stimuli. Packet frequency varied with cortical state, with desynchronized state activity consistent with superposition of multiple overlapping packets. We suggest that such packets reflect the sporadic opening of a “gate” that allows auditory cortex to broadcast a representation of external sounds to other brain regions.

Journal ArticleDOI
TL;DR: The results suggest that pair-selective visual responses may be top- down signals that the prefrontal cortex provides to the temporal cortex, although further studies are needed to elucidate the neural correlates of top-down signals and their characteristics to understand the neural mechanism of executive control by the cortex.
Abstract: Executive function is a product of the coordinated operation of multiple neural systems and an essential prerequisite for a variety of cognitive functions. The prefrontal cortex is known to be a key structure for the performance of executive functions. To accomplish the coordinated operations of multiple neural systems, the prefrontal cortex must monitor the activities in other cortical and subcortical structures and control and supervise their operations by sending command signals, which is called top-down signaling. Although neurophysiological and neuroimaging studies have provided evidence that the prefrontal cortex sends top-down signals to the posterior cortices to control information processing, the neural correlate of these top-down signals is not yet known. Through use of the paired association task, it has been demonstrated that top-down signals are used to retrieve specific information stored in long-term memory. Therefore, we used a paired association task to examine the neural correlates of top-down signals in the prefrontal cortex. The preliminary results indicate that 32% of visual neurons exhibit pair-selectivity, which is similar to the characteristics of pair-coding activities in temporal neurons. The latency of visual responses in prefrontal neurons was longer than bottom-up signals but faster than top-down signals in inferior temporal neurons. These results suggest that pair-selective visual responses may be top-down signals that the prefrontal cortex provides to the temporal cortex, although further studies are needed to elucidate the neural correlates of top-down signals and their characteristics to understand the neural mechanism of executive control by the prefrontal cortex.

Journal ArticleDOI
TL;DR: The results demonstrated the validity of multiband R- fMRI data to reliably detect functional hubs in the voxel-wise whole-brain networks, which motivated the acquisition of high temporal resolution R-fMRI data for the studies of human brain functional connectomes in healthy and diseased conditions.

Journal ArticleDOI
TL;DR: The coactivation network showed greater global efficiency, smaller mean clustering coefficient, and lower modularity compared with the resting-state network, which suggest a more efficient global information transmission and between system integrations during task performing.
Abstract: There is a growing interest in studies of human brain networks using resting-state functional magnetic resonance imaging (fMRI). However, it is unclear whether and how brain networks measured during the resting-state exhibit comparable properties to brain networks during task performance. In the present study, we investigated meta-analytic coactivation patterns among brain regions based upon published neuroimaging studies, and compared the coactivation network configurations with those in the resting-state network. The strength of resting-state functional connectivity between two regions were strongly correlated with the coactivation strength. However, the coactivation network showed greater global efficiency, smaller mean clustering coefficient, and lower modularity compared with the resting-state network, which suggest a more efficient global information transmission and between system integrations during task performing. Hub shifts were also observed within the thalamus and the left inferior temporal cortex. The thalamus and the left inferior temporal cortex exhibited higher and lower degrees, respectively in the coactivation network compared with the resting-state network. These results shed light regarding the reconfiguration of the brain networks between task and resting-state conditions, and highlight the role of the thalamus in change of network configurations in task vs. rest.

Journal ArticleDOI
TL;DR: In this paper, the authors tracked changes in structural connectivity and network efficiency in 439 right-handed individuals aged 12 to 30 (211 female/126 male adults, mean age=23.6, SD=2.19, 31 female/24 male 12 year olds, average age=12.3, SD = 0.18, and 25 female/22 male 16 year olds averaged age=16.2.

Journal ArticleDOI
TL;DR: Novel data-driven analyses, based on k-means clustering of searchlight dissimilarity matrices and seeded correlation analysis, revealed subtle differences in the representations in semantic-sensitive regions, with representations in LIPS being relatively invariant to stimulus modality and representations in LpMTG being uncorrelated across modality.
Abstract: Understanding the meanings of words and objects requires the activation of underlying conceptual representations. Semantic representations are often assumed to be coded such that meaning is evoked regardless of the input modality. However, the extent to which meaning is coded in modality-independent or amodal systems remains controversial. We address this issue in a human fMRI study investigating the neural processing of concepts, presented separately as written words and pictures. Activation maps for each individual word and picture were used as input for searchlight-based multivoxel pattern analyses. Representational similarity analysis was used to identify regions correlating with low-level visual models of the words and objects and the semantic category structure common to both. Common semantic category effects for both modalities were found in a left-lateralized network, including left posterior middle temporal gyrus (LpMTG), left angular gyrus, and left intraparietal sulcus (LIPS), in addition to object- and word-specific semantic processing in ventral temporal cortex and more anterior MTG, respectively. To explore differences in representational content across regions and modalities, we developed novel data-driven analyses, based on k-means clustering of searchlight dissimilarity matrices and seeded correlation analysis. These revealed subtle differences in the representations in semantic-sensitive regions, with representations in LIPS being relatively invariant to stimulus modality and representations in LpMTG being uncorrelated across modality. These results suggest that, although both LpMTG and LIPS are involved in semantic processing, only the functional role of LIPS is the same regardless of the visual input, whereas the functional role of LpMTG differs for words and objects.

Journal ArticleDOI
TL;DR: A maturational primacy of the ventral connection in the language network associating the temporal areas to the inferior frontal gyrus during early development is revealed, which is already in place at birth.

Journal ArticleDOI
TL;DR: In a functional near-infrared spectroscopy study, infants aged 4–6 months at risk for autism showed less selective neural responses to social stimuli than low-risk controls, the first demonstration of specific differences in localizable brain function within the first 6 months of life in a group of infants atrisk for autism.
Abstract: In the hope of discovering early markers of autism, attention has recently turned to the study of infants at risk owing to being the younger siblings of children with autism. Because the condition is highly heritable, later-born siblings of diagnosed children are at substantially higher risk for developing autism or the broader autism phenotype than the general population. Currently, there are no strong predictors of autism in early infancy and diagnosis is not reliable until around 3 years of age. Because indicators of brain functioning may be sensitive predictors, and atypical social interactions are characteristic of the syndrome, we examined whether temporal lobe specialization for processing visual and auditory social stimuli during infancy differs in infants at risk. In a functional near-infrared spectroscopy study, infants aged 4–6 months at risk for autism showed less selective neural responses to social stimuli (auditory and visual) than low-risk controls. These group differences could not be attributed to overall levels of attention, developmental stage or chronological age. Our results provide the first demonstration of specific differences in localizable brain function within the first 6 months of life in a group of infants at risk for autism. Further, these differences closely resemble known patterns of neural atypicality in children and adults with autism. Future work will determine whether these differences in infant neural responses to social stimuli predict either later autism or the broader autism phenotype frequently seen in unaffected family members.

Journal ArticleDOI
TL;DR: The results indicate that changes in cortical resource allocation are apparent in early stages of adult hearing loss, and that these passively-elicited cortical changes are related to behavioral speech perception outcome.
Abstract: Hearing loss has been linked to many types of cognitive decline in adults, including an association between hearing loss severity and dementia. However, it remains unclear whether cortical re-organization associated with hearing loss occurs in early stages of hearing decline and in early stages of auditory processing. In this study, we examined compensatory plasticity in adults with mild-moderate hearing loss using obligatory, passively-elicited, cortical auditory evoked potentials (CAEP). High density EEG elicited by speech stimuli was recorded in adults with hearing loss and age-matched normal hearing controls. Latency, amplitude and source localization of the P1, N1, P2 components of the CAEP were analyzed. Adults with mild-moderate hearing loss showed increases in latency and amplitude of the P2 CAEP relative to control subjects. Current density reconstructions revealed decreased activation in temporal cortex and increased activation in frontal cortical areas for hearing-impaired listeners relative to normal hearing listeners. Participants’ behavioral performance on a clinical test of speech perception in noise was significantly correlated with the increases in P2 latency. Our results indicate that changes in cortical resource allocation are apparent in early stages of adult hearing loss, and that these passively-elicited cortical changes are related to behavioral speech perception outcome.

01 Jan 2013
TL;DR: This large-scale analysis of the developing structural connectome offers a foundation to develop statistical criteria for aberrant brain connectivity as the human brain matures.
Abstract: Understanding how the brain matures in healthy individuals is critical for evaluating deviations from normal development in psychiatric and neurodevelopmental disorders. The brain's anatomical networks are profoundly re-modeled between childhood and adulthood, and diffusion tractography offers unprecedented power to reconstruct these networks and neural pathways in vivo. Here we tracked changes in structural connectivity and network efficiency in 439 right-handed individuals aged 12 to 30 (211 female/126 male adults, mean age=23.6, SD=2.19; 31 female/24 male 12 year olds, mean age=12.3, SD=0.18; and 25 female/22 male 16 year olds, mean age=16.2, SD=0.37). All participants were scanned with high angular resolution diffusion imaging (HARDI) at 4 T. After we performed whole brain tractography, 70 cortical gyral-based regions of interest were extracted from each participant's co-registered anatomical scans. The proportion of fiber connections between all pairs of cortical regions, or nodes, was found to create symmetric fiber density matrices, reflecting the structural brain network. From those 70 × 70 matrices we computed graph theory metrics characterizing structural connectivity. Several key global and nodal metrics changed across development, showing increased network integration, with some connections pruned and others strengthened. The increases and decreases in fiber density, however, were not distributed proportionally across the brain. The frontal cortex had a disproportionate number of decreases in fiber density while the temporal cortex had a disproportionate number of increases in fiber density. This large-scale analysis of the developing structural connectome offers a foundation to develop statistical criteria for aberrant brain connectivity as the human brain matures.

Journal ArticleDOI
TL;DR: In this article, the authors explored the relationship between the temporoparietal junction (TPJ) and other brain regions in the macaque brain and found that areas in the middle part of the superior temporal cortex, often associated with the processing of faces and other social stimuli, have the most similar connectivity profile.
Abstract: The human ability to infer the thoughts and beliefs of others, often referred to as “theory of mind,” as well as the predisposition to even consider others, are associated with activity in the temporoparietal junction (TPJ) area. Unlike the case of most human brain areas, we have little sense of whether or how TPJ is related to brain areas in other nonhuman primates. It is not possible to address this question by looking for similar task-related activations in nonhuman primates because there is no evidence that nonhuman primates engage in theory-of-mind tasks in the same manner as humans. Here, instead, we explore the relationship by searching for areas in the macaque brain that interact with other macaque brain regions in the same manner as human TPJ interacts with other human brain regions. In other words, we look for brain regions with similar positions within a distributed neural circuit in the two species. We exploited the fact that human TPJ has a unique functional connectivity profile with cortical areas with known homologs in the macaque. For each voxel in the macaque temporal and parietal cortex we evaluated the similarity of its functional connectivity profile to that of human TPJ. We found that areas in the middle part of the superior temporal cortex, often associated with the processing of faces and other social stimuli, have the most similar connectivity profile. These results suggest that macaque face processing areas and human mentalizing areas might have a similar precursor.

Journal ArticleDOI
01 May 2013-Headache
TL;DR: Atypical resting‐state functional connectivity of affective pain‐processing brain regions may associate with chronic migraineurs' painful intolerances to somatosensory, visual, olfactory, and auditory stimuli during and between migraine attacks.
Abstract: Objective.— Chronic migraineurs (CM) have painful intolerances to somatosensory, visual, olfactory, and auditory stimuli during and between migraine attacks. These intolerances are suggestive of atypical affective responses to potentially noxious stimuli. We hypothesized that atypical resting-state functional connectivity (rs-fc) of affective pain-processing brain regions may associate with these intolerances. This study compared rs-fc of affective pain-processing regions in CM with controls. Methods.— Twelve minutes of resting-state blood oxygenation level-dependent data were collected from 20 interictal adult CM and 20 controls. Rs-fc between 5 affective regions (anterior cingulate cortex, right/left anterior insula, and right/left amygdala) with the rest of the brain was determined. Functional connections consistently differing between CM and controls were identified using summary analyses. Correlations between number of migraine years and the strengths of functional connections that consistently differed between CM and controls were calculated. Results.— Functional connections with affective pain regions that differed in CM and controls included regions in anterior insula, amygdala, pulvinar, mediodorsal thalamus, middle temporal cortex, and periaqueductal gray. There were significant correlations between the number of years with CM and functional connectivity strength between the anterior insula with mediodorsal thalamus and anterior insula with periaqueductal gray. Conclusion.— CM is associated with interictal atypical rs-fc of affective pain regions with pain-facilitating and pain-inhibiting regions that participate in sensory-discriminative, cognitive, and integrative domains of the pain experience. Atypical rs-fc with affective pain regions may relate to aberrant affective pain processing and atypical affective responses to painful stimuli characteristic of CM.

Journal ArticleDOI
TL;DR: The present study examines the hemispheric superiority for faces and words in children, young adolescents and adults in a discrimination task in which stimuli are presented briefly in either hemifield and finds that word lateralization, which emerges earlier, may drive later face lateralization.
Abstract: Consistent with long-standing findings from behavioral studies, neuroimaging investigations have identified a region of the inferior temporal cortex that, in adults, shows greater face selectivity in the right than left hemisphere and, conversely, a region that shows greater word selectivity in the left than right hemisphere. What has not been determined is how this pattern of mature hemispheric specialization emerges over the course of development. The present study examines the hemispheric superiority for faces and words in children, young adolescents and adults in a discrimination task in which stimuli are presented briefly in either hemifield. Whereas adults showed the expected left and right visual field superiority for face and word discrimination, respectively, the young adolescents demonstrated only the right-field superiority for words and no field superiority for faces. Although the children’s overall accuracy was lower than that of the older groups, like the young adolescents, they exhibited a right visual field superiority for words but no field superiority for faces. Interestingly, the emergence of face lateralization was correlated with reading competence, measured on an independent standardized test, after regressing out age, quantitative reasoning scores, and face discrimination accuracy. Taken together, these findings suggest that the hemispheric organization of face and word recognition do not develop independently and that word lateralization, which emerges earlier, may drive later face lateralization. A theoretical account in which competition for visual representations unfolds over the course of development is proposed to account for the findings.

Journal ArticleDOI
08 Oct 2013-Brain
TL;DR: Logopenic aphasia due to probable Alzheimer pathology is a more aggressive variant characterized by more extensive language/cognitive disorders affecting, in addition to lexical processes and verbal working memory, also phoneme sequencing, semantic processing and ideomotor praxis.
Abstract: Within primary progressive aphasia the logopenic variant remains less understood than the two other main variants, namely semantic and non-fluent progressive aphasia. This may be because of the relatively small number of explored patients and because of the lack of investigations with a comprehensive three-level characterization of cognitive, brain localization and biological aspects. The aim of the present study was to decipher the logopenic variant through a multimodal approach with a large cohort of 19 patients (age 66.5 ± 8.7 years, symptom duration 3.2 ± 0.6 years) using detailed cognitive and linguistic assessments, magnetic resonance imaging and perfusion single-photon emission computed tomography as well as cerebrospinal fluid biomarkers screening for Alzheimer pathology. The linguistic assessment unveiled that language dysfunction is not limited to the typical feature of word finding and verbal working memory impairments but that it extends into the language system affecting to some degree syntactic production, phonological encoding and semantic representations. Perfusion tomography revealed damage of the temporal-parietal junction with a peak of significance in the superior temporal gyrus (Brodmann area 42), and of some less significant prefrontal areas (Brodmann areas 8, 9 and 46), whereas hippocampal cortices were unaffected. Magnetic resonance imaging, which was visually assessed in a larger group of 54 patients with logopenic, non-fluent, semantic variants as well as with posterior cortical atrophy, confirmed that the logopenic variant demonstrates predominant atrophy of left temporal-parietal junction, but that this atrophy pattern has a relatively poor sensitivity and specificity for clinical diagnosis. Finally, the biomarker study revealed that two-thirds of the logopenic patients demonstrated a profile indicative of Alzheimer pathology whereas one-third had a non-Alzheimer profile. Splitting the two groups showed that logopenic aphasia due to probable Alzheimer pathology is a more aggressive variant characterized by more extensive language/cognitive disorders affecting, in addition to lexical processes and verbal working memory, also phoneme sequencing, semantic processing and ideomotor praxis. Concordantly, logopenic aphasia due to probable Alzheimer pathology demonstrated more extensive brain hypoperfusion involving larger regions throughout the inferior parietal, the posterior-superior and the middle temporal cortex. These findings allow for unfolding logopenic aphasia into two subvariants differing by disease severity, lesion nature and lesion distribution, which has important implications for diagnosis, patient management and for potential future trials with anti-Alzheimer drugs. The present data therefore provide novel insight into the cognition and brain damage of logopenic patients while unveiling the existence of distinct diseases constituting a 'logopenic aphasia complex'.

Journal ArticleDOI
TL;DR: A model linkingspecies differences in mirror system connectivity and responsivity with species differences in behavior, including adaptations for imitation and social learning of tool use is suggested.
Abstract: Social learning varies among primate species. Macaques only copy the product of observed actions, or emulate, while humans and chimpanzees also copy the process, or imitate. In humans, imitation is linked to the mirror system. Here we compare mirror system connectivity across these species using diffusion tensor imaging. In macaques and chimpanzees, the preponderance of this circuitry consists of frontal–temporal connections via the extreme/external capsules. In contrast, humans have more substantial temporal–parietal and frontal–parietal connections via the middle/inferior longitudinal fasciculi and the third branch of the superior longitudinal fasciculus. In chimpanzees and humans, but not in macaques, this circuitry includes connections with inferior temporal cortex. In humans alone, connections with superior parietal cortex were also detected. We suggest a model linking species differences in mirror system connectivity and responsivity with species differences in behavior, including adaptations for imitation and social learning of tool use.

Journal ArticleDOI
TL;DR: It is concluded that a phenotypic change of existing glial cells, rather than a marked proliferation of glial precursors, accounts for the majority of the glial responses observed in the AD brain.
Abstract: Classical immunohistochemical studies in the Alzheimer disease (AD) brain reveal prominent glial reactions, but whether this pathological feature is due primarily to cell proliferation or to a phenotypic change of existing resting cells remains controversial. We performed double-fluorescence immunohistochemical studies of astrocytes and microglia, followed by unbiased stereology-based quantitation in temporal cortex of 40 AD patients and 32 age-matched nondemented subjects. Glial fibrillary acidic protein (GFAP) and major histocompatibility complex II (MHC2) were used as markers of astrocytic and microglial activation, respectively. Aldehyde dehydrogenase 1 L1 and glutamine synthetase were used as constitutive astrocytic markers, and ionized calcium-binding adaptor molecule 1 (IBA1) as a constitutive microglial marker. As expected, AD patients had higher numbers of GFAP+ astrocytes and MHC2+ microglia than the nondemented subjects. However, both groups had similar numbers of total astrocytes and microglia and, in the AD group, these total numbers remained essentially constant over the clinical course of the disease. The GFAP immunoreactivity of astrocytes, but not the MHC2 immunoreactivity of microglia, increased in parallel with the duration of the clinical illness in the AD group. Cortical atrophy contributed to the perception of increased glia density. We conclude that a phenotypic change of existing glial cells, rather than a marked proliferation of glial precursors, accounts for the majority of the glial responses observed in the AD brain.

Journal ArticleDOI
TL;DR: Using magnetoencephalography (MEG), this study found that brain activity was modulated by whether or not a specific noun could be predicted, given a picture prime, which suggests that predictive language processing recruits a top-down network where predicted words are activated at different levels of representation.

Journal ArticleDOI
TL;DR: Examination of functional magnetic resonance imaging data suggests that episodic counterfactual thinking engages regions that form the core brain network, and also that the subjective likelihood of the authors' counterfactUAL thoughts modulates the engagement of different areas within this set of regions.