scispace - formally typeset
Search or ask a question

Showing papers on "Transdifferentiation published in 2013"


Journal ArticleDOI
24 Oct 2013-Cell
TL;DR: A precise match between pioneer factors and the chromatin context at key target genes is determinative for transdifferentiation to neurons and likely other cell types.

518 citations


Journal ArticleDOI
09 Jan 2013-Neuron
TL;DR: It is shown that new hair cells can be induced and can cause partial recovery of hearing in ears damaged by noise trauma, when Notch signaling is inhibited by a γ-secretase inhibitor selected for potency in stimulating hair cell differentiation from inner ear stem cells in vitro.

327 citations


Journal ArticleDOI
TL;DR: Direct conversion of mouse embryonic and lung fibroblasts to induced oligodendrocyte progenitor cells (iOPCs) using sets of either eight or three defined transcription factors shows a bipolar morphology and global gene expression profile consistent with bona fide OPCs.
Abstract: Two studies show direct conversion of mouse embryonic fibroblasts to oligodendrocyte progenitor cells capable of generating myelinating oligodendrocytes.

256 citations


Journal ArticleDOI
TL;DR: It is shown that acinar cells, without exogenously introduced factors, can regain aspects of embryonic multipotentiality under injury, and convert into mature β-cells.
Abstract: Pancreatic multipotent progenitor cells (MPCs) produce acinar, endocrine and duct cells during organogenesis, but their existence and location in the mature organ remain contentious. We used inducible lineage-tracing from the MPC-instructive gene Ptf1a to define systematically in mice the switch of Ptf1a+ MPCs to unipotent proacinar competence during the secondary transition, their rapid decline during organogenesis, and absence from the mature organ. Between E11.5 and E15.5, we describe tip epithelium heterogeneity, suggesting that putative Ptf1a+Sox9+Hnf1β+ MPCs are intermingled with Ptf1aHISox9LO proacinar progenitors. In the adult, pancreatic duct ligation (PDL) caused facultative reactivation of multipotency factors (Sox9 and Hnf1β) in Ptf1a+ acini, which undergo rapid reprogramming to duct cells and longer-term reprogramming to endocrine cells, including insulin+ β-cells that are mature by the criteria of producing Pdx1HI, Nkx6.1+ and MafA+. These Ptf1a lineage-derived endocrine/β-cells are likely formed via Ck19+/Hnf1β+/Sox9+ ductal and Ngn3+ endocrine progenitor intermediates. Acinar to endocrine/β-cell transdifferentiation was enhanced by combining PDL with pharmacological elimination of pre-existing β-cells. Thus, we show that acinar cells, without exogenously introduced factors, can regain aspects of embryonic multipotentiality under injury, and convert into mature β-cells.

256 citations


Journal ArticleDOI
TL;DR: Because of their critical role in post-infarction cardiac remodeling, fibroblasts are promising therapeutic targets following myocardial infarction, but the complexity of fibroblast functions and the pathophysiologic heterogeneity of post-Infarction remodeling in the clinical context discourage oversimplified approaches in clinical translation.

255 citations


Journal ArticleDOI
TL;DR: approaches used to study fibrosis in tissues, such as lung, kidney, and liver, need to be applied to studies of skeletal muscle to identify ways to prevent or even cure the devastating maladies of skeletal Muscle Fibrosis.
Abstract: Skeletal muscle fibrosis can be a devastating clinical problem that arises from many causes, including primary skeletal muscle tissue diseases, as seen in the muscular dystrophies, or it can be secondary to events that include trauma to muscle or brain injury The cellular source of activated fibroblasts (myofibroblasts) may include resident fibroblasts, adult muscle stem cells, or inflammatory or perivascular cells, depending on the model studied Even though it is likely that there is no single source for all myofibroblasts, a common mechanism for the production of fibrosis is via the transforming growth factor-β/phosphorylated Smad3 pathway This pathway and its downstream targets thus provide loci for antifibrotic therapies, as do methods for blocking the transdifferentiation of progenitors into activated fibroblasts A structural model for the extracellular collagen network of skeletal muscle is needed so that measurements of collagen content, morphology, and gene expression can be related to mechanical properties Approaches used to study fibrosis in tissues, such as lung, kidney, and liver, need to be applied to studies of skeletal muscle to identify ways to prevent or even cure the devastating maladies of skeletal muscle

231 citations


Journal ArticleDOI
TL;DR: Macrophages infiltrating the pancreas in response to inflammation induce cellular transdifferentiation by secreting cytokines that activate NF-κB signaling and matrix metalloproteinase expression.
Abstract: In response to inflammation, pancreatic acinar cells can undergo acinar-to-ductal metaplasia (ADM), a reprogramming event that induces transdifferentiation to a ductlike phenotype and, in the context of additional oncogenic stimulation, contributes to development of pancreatic cancer. The signaling mechanisms underlying pancreatitis-inducing ADM are largely undefined. Our results provide evidence that macrophages infiltrating the pancreas drive this transdifferentiation process. We identify the macrophage-secreted inflammatory cytokines RANTES and tumor necrosis factor α (TNF) as mediators of such signaling. Both RANTES and TNF induce ADM through activation of nuclear factor κB and its target genes involved in regulating survival, proliferation, and degradation of extracellular matrix. In particular, we identify matrix metalloproteinases (MMPs) as targets that drive ADM and provide in vivo data suggesting that MMP inhibitors may be efficiently applied to block pancreatitis-induced ADM in therapy.

220 citations


Journal ArticleDOI
TL;DR: A reporter system in which the calcium indicator GCaMP is driven by the cardiomyocyte-specific Troponin T promoter is constructed and it is concluded that HNGMT produces iCMs more efficiently than previously published methods.

202 citations


Journal ArticleDOI
TL;DR: The current knowledge about different progenitor cells of myofibroblasts is summarized, major pathways that regulate their transdifferentiation are discussed and the current status of novel targeted anti‐fibrotic therapeutics in development are discussed.
Abstract: Fibrosis and scar formation results from chronic progressive injury in virtually every tissue and affects a growing number of people around the world. Myofibroblasts drive fibrosis, and recent work has demonstrated that mesenchymal cells, including pericytes and perivascular fibroblasts, are their main progenitors. Understanding the cellular mechanisms of pericyte/fibroblast-to-myofibroblast transition, myofibroblast proliferation and the key signalling pathways that regulate these processes is essential to develop novel targeted therapeutics for the growing patient population suffering from solid organ fibrosis. In this review, we summarize the current knowledge about different progenitor cells of myofibroblasts, discuss major pathways that regulate their transdifferentiation and discuss the current status of novel targeted anti-fibrotic therapeutics in development.

192 citations


Journal ArticleDOI
TL;DR: Current evidence shedding light on the emerging roles of tumour‐promoting CAFs, cells that are pivotal for epithelial cancer development and progression, are examined and the therapeutic potential of targeting these cells is discussed.
Abstract: Cancerous stroma coevolves alongside tumour progression, thereby promoting the malignant conversion of epithelial carcinoma cells. To date, an abundance of data have supported crucial roles of the tumour microenvironment (TME) in providing cancer cells with proliferative, migratory, survival and invasive propensities favouring the processes of tumourigenesis. The cancerous reactive stroma is frequently populated by a large number of myofibroblasts (MFs), which are activated, non-transformed fibroblasts expressing α-smooth muscle actin (α-SMA). MFs together with non-MF cells present in the tumour-associated stroma are collectively referred to as carcinoma-associated fibroblasts (CAFs), one of the major stromal cell types recognised in various human carcinomas. Recruitment of fibroblasts and/or their progenitors to a tumour mass and their subsequent transdifferentiation into MFs, as well as ongoing maintenance of their activated state, are believed to be essential processes facilitating tumour progression. However, the complex networks of signalling pathways mediating the phenotypic conversion into CAFs, as well as those underlying their tumour-promoting interactions with other tumour-constituting cells, have yet to be fully explored. Histopathological confirmation of the presence of large numbers of CAF MFs within TME and their altered gene expression profiles are known to be associated with disease progression and to serve as independent negative prognostic factors for a wide range of tumour types. In this review, we examine the current evidence shedding light on the emerging roles of tumour-promoting CAFs, cells that are pivotal for epithelial cancer development and progression, and discuss the therapeutic potential of targeting these cells.

184 citations


Journal ArticleDOI
TL;DR: Using mouse models, conditional cell lineage analysis has demonstrated that MCs expressing Wilms tumor 1 give rise to HSCs and myofibroblasts during liver fibrogenesis, indicating thatMCs undergo mesothelial–mesenchymal transition and participate in liver injury via differentiation.
Abstract: In many organs, myofibroblasts play a major role in the scarring process in response to injury. In liver fibrogenesis, hepatic stellate cells (HSCs) are thought to transdifferentiate into myofibroblasts, but the origins of both HSCs and myofibroblasts remain elusive. In the developing liver, lung, and intestine, mesothelial cells (MCs) differentiate into specific mesenchymal cell types; however, the contribution of this differentiation to organ injury is unknown. In the present study, using mouse models, conditional cell lineage analysis has demonstrated that MCs expressing Wilms tumor 1 give rise to HSCs and myofibroblasts during liver fibrogenesis. Primary MCs, isolated from adult mouse liver using antibodies against glycoprotein M6a, undergo myofibroblastic transdifferentiation. Antagonism of TGF-β signaling suppresses transition of MCs to mesenchymal cells both in vitro and in vivo. These results indicate that MCs undergo mesothelial–mesenchymal transition and participate in liver injury via differentiation to HSCs and myofibroblasts.

Journal ArticleDOI
TL;DR: Advances in the understanding of the contribution of FOXO1 signalling to the development of β-cell failure in T2DM are discussed, suggesting a primary role for β- cell dysfunction in the pathogenesis of T2 DM.
Abstract: Over the past two decades, insulin resistance has been considered essential to the aetiology of type 2 diabetes mellitus (T2DM). However, insulin resistance does not lead to T2DM unless it is accompanied by pancreatic β-cell dysfunction, because healthy β cells can compensate for insulin resistance by increasing in number and functional output. Furthermore, β-cell mass is decreased in patients with diabetes mellitus, suggesting a primary role for β-cell dysfunction in the pathogenesis of T2DM. The dysfunction of β cells can develop through various mechanisms, including oxidative, endoplasmic reticulum or hypoxic stress, as well as via induction of cytokines; these processes lead to apoptosis, uncontrolled autophagy and failure to proliferate. Transdifferentiation between β cells and α cells occurs under certain pathological conditions, and emerging evidence suggests that β-cell dedifferentiation or transdifferentiation might account for the reduction in β-cell mass observed in patients with severe T2DM. FOXO1, a key transcription factor in insulin signalling, is implicated in these mechanisms. This Review discusses advances in our understanding of the contribution of FOXO1 signalling to the development of β-cell failure in T2DM.

Journal ArticleDOI
19 Aug 2013-PLOS ONE
TL;DR: This work demonstrates for the first time that exposure to ES promoted skin fibroblast growth and migration, increased growth factor secretion, and promoted fibroblasts to myofibroblast transdifferentiation, thus promoting wound healing.
Abstract: Electrical stimulation (ES) has long been used as an alternative clinical treatment and an effective approach to modulate cellular behaviours. In this work we investigated the effects of ES on human skin fibroblast activity, myofibroblast transdifferentiation and the consequence on wound healing. Normal human fibroblasts were seeded on heparin-bioactivated PPy/PLLA conductive membranes, cultured for 24 h, and then exposed to ES of 50 or 200 mV/mm for 2, 4, or 6 h. Following ES, the cells were either subjected to various analyses or re-seeded to investigate their healing capacity. Our findings show that ES had no cytotoxic effect on the fibroblasts, as demonstrated by the similar LDH activity levels in the ES-exposed and non-exposed cultures, and by the comparable cell viability under both conditions. Furthermore, the number of viable fibroblasts was higher following exposure to 6 h of ES than in the non-exposed culture. This enhanced cell growth was likely due to the ES up-regulated secretion of FGF-1 and FGF-2. In an in vitro scratch-wound assay where cell monolayer was used as a healing model, the electrically stimulated dermal fibroblasts migrated faster following exposure to ES and recorded a high contractile behaviour toward the collagen gel matrix. This enhanced contraction was supported by the high level of α-smooth muscle actin expressed by the fibroblasts following exposure to ES, indicating the characteristics of myofibroblasts. Remarkably, the modulation of fibroblast growth continued long after ES. In conclusion, this work demonstrates for the first time that exposure to ES promoted skin fibroblast growth and migration, increased growth factor secretion, and promoted fibroblast to myofibroblast transdifferentiation, thus promoting wound healing.

Journal ArticleDOI
TL;DR: It is demonstrated that human fibroblasts can be transdifferentiated into functional ECs by using only 2 factors, Oct4 and Klf4, under inductive signaling conditions, to generate functional autologous ECs for therapeutic applications.
Abstract: Objective— Transdifferentiation of fibroblasts to endothelial cells (ECs) may provide a novel therapeutic avenue for diseases, including ischemia and fibrosis. Here, we demonstrate that human fibroblasts can be transdifferentiated into functional ECs by using only 2 factors, Oct4 and Klf4, under inductive signaling conditions. Approach and Results— To determine whether human fibroblasts could be converted into ECs by transient expression of pluripotency factors, human neonatal fibroblasts were transduced with lentiviruses encoding Oct4 and Klf4 in the presence of soluble factors that promote the induction of an endothelial program. After 28 days, clusters of induced endothelial (iEnd) cells seemed and were isolated for further propagation and subsequent characterization. The iEnd cells resembled primary human ECs in their transcriptional signature by expressing endothelial phenotypic markers, such as CD31, vascular endothelial-cadherin, and von Willebrand Factor. Furthermore, the iEnd cells could incorporate acetylated low–density lipoprotein and form vascular structures in vitro and in vivo. When injected into the ischemic limb of mice, the iEnd cells engrafted, increased capillary density, and enhanced tissue perfusion. During the transdifferentiation process, the endogenous pluripotency network was not activated, suggesting that this process bypassed a pluripotent intermediate step. Conclusions— Pluripotent factor–induced transdifferentiation can be successfully applied for generating functional autologous ECs for therapeutic applications.

Journal ArticleDOI
01 Jul 2013-Diabetes
TL;DR: This work shows that primary human β-cells can undergo a conversion into glucagon-producing α-cells without introduction of any genetic modification, and reveals an unknown plasticity of human adult endocrine cells that can be modulated.
Abstract: Conversion of one terminally differentiated cell type into another (or transdifferentiation) usually requires the forced expression of key transcription factors. We examined the plasticity of human insulin-producing β-cells in a model of islet cell aggregate formation. Here, we show that primary human β-cells can undergo a conversion into glucagon-producing α-cells without introduction of any genetic modification. The process occurs within days as revealed by lentivirus-mediated β-cell lineage tracing. Converted cells are indistinguishable from native α-cells based on ultrastructural morphology and maintain their α-cell phenotype after transplantation in vivo. Transition of β-cells into α-cells occurs after β-cell degranulation and is characterized by the presence of β-cell–specific transcription factors Pdx1 and Nkx6.1 in glucagon+ cells. Finally, we show that lentivirus-mediated knockdown of Arx, a determinant of the α-cell lineage, inhibits the conversion. Our findings reveal an unknown plasticity of human adult endocrine cells that can be modulated. This endocrine cell plasticity could have implications for islet development, (patho)physiology, and regeneration.

Journal ArticleDOI
TL;DR: This study suggests that BM-cMSCs can ameliorate salivary damage following irradiation and can be used as a source of cell-based therapy for restoration of irradiation-inducedSalivary hypofunction.

Journal ArticleDOI
TL;DR: Northern blotting analysis of VSMCs treated with β-glycerophosphate demonstrated that miR-133a was significantly decreased during osteogenic differentiation, providing functional evidence that the effects of miR -133a in osteogenic differentiate were mediated by targeting Runx2.
Abstract: Arterial calcification is a key pathologic component of vascular diseases such as atherosclerosis, coronary artery disease, and peripheral vascular disease. A hallmark of this pathological process is the phenotypic transition of vascular smooth muscle cells (VSMCs) to osteoblast-like cells. Several studies have demonstrated that microRNAs (miRNAs) regulate osteoblast differentiation, but it is unclear whether miRNAs also regulate VSMC-mediated arterial calcification. In the present study, we sought to characterize the role of miR-133a in regulating VSMC-mediated arterial calcification. Northern blotting analysis of VSMCs treated with β-glycerophosphate demonstrated that miR-133a was significantly decreased during osteogenic differentiation. Overexpression of miR-133a inhibited VSMC transdifferentiation into osteoblast-like cells as evidenced by a decrease in alkaline phosphatase activity, osteocalcin secretion, Runx2 expression, and mineralized nodule formation. Conversely, the knockdown of miR-133a using an miR-133a inhibitor promoted osteogenic differentiation of VSMCs by increasing alkaline phosphatase activity, osteocalcin secretion, and Runx2 expression. Runx2 was identified as a direct target of miR-133a by a cotransfection experiment in VSMCs with luciferase reporter plasmids containing wild-type or mutant 3'-untranslated region sequences of Runx2. Furthermore, the pro-osteogenic effects of miR-133a inhibitor were abrogated in Runx2-knockdown cells, and the inhibition of osteogenic differentiation by pre-miR-133a was reversed by overexpression of Runx2, providing functional evidence that the effects of miR-133a in osteogenic differentiation were mediated by targeting Runx2. These results demonstrate that miR-133a is a key negative regulator of the osteogenic differentiation of VSMCs.

Journal ArticleDOI
TL;DR: Recent progress of small molecule approaches in the generation of induced pluripotent stem cells are reviewed and the new concept of iPSC transcription factor-based transdifferentiation is summarized and its application in generating various lineage-specific cells, especially cardiovascular cells is discussed.
Abstract: Pluripotent stem cells can differentiate into nearly all types of cells in the body. This unique potential provides significant promise for cell-based therapies to restore tissues or organs destroyed by injuries, degenerative diseases, aging, or cancer. The discovery of induced pluripotent stem cell (iPSC) technology offers a possible strategy to generate patient-specific pluripotent stem cells. However, because of concerns about the specificity, efficiency, kinetics, and safety of iPSC reprogramming, improvements or fundamental changes in this process are required before their effective clinical use. A chemical approach is regarded as a promising strategy to improve and change the iPSC process. Dozens of small molecules have been identified that can functionally replace reprogramming factors and significantly improve iPSC reprogramming. In addition to the prospect of deriving patient-specific tissues and organs from iPSCs, another attractive strategy for regenerative medicine is transdifferentiation-the direct conversion of one somatic cell type to another. Recent studies revealed a new paradigm of transdifferentiation: using transcription factors used in iPSC generation to induce transdifferentiation or called iPSC transcription factor-based transdifferentiation. This type of transdifferentiation not only reveals and uses the developmentally plastic intermediates generated during iPSC reprogramming but also produces a wide range of cells, including expandable tissue-specific precursor cells. Here, we review recent progress of small molecule approaches in the generation of iPSCs. In addition, we summarize the new concept of iPSC transcription factor-based transdifferentiation and discuss its application in generating various lineage-specific cells, especially cardiovascular cells.

Journal ArticleDOI
TL;DR: A quantitative RT-PCR-based analysis of laser microdissected tissue confirmed that miR-21 expression is associated with a four-fold mean increase in CRC stroma compared with normal tissue, and highlights the importance of miRNA deregulation within the tumour microenvironment and identifies a potential application for stromal miRNAs as biomarkers in cancer.
Abstract: The oncogene microRNA-21 (miRNA; miR-21) is overexpressed in most solid organ tumours; however, a recent examination of stage II colorectal cancer (CRC) specimens suggests this may be a stromal phenomenon and not only a feature of cancer cells In vitro and in vivo studies show that miR-21 has potent pro-metastatic effects in various malignant carcinoma cell lines The tumour microenvironment has also been identified as a key actor during the metastatic cascade; however to date the significance of deregulated miR-21 expression within the cancer-associated stroma has not been examined In the present study, a quantitative RT-PCR-based analysis of laser microdissected tissue confirmed that miR-21 expression is associated with a four-fold mean increase in CRC stroma compared with normal tissue In situ hybridisation using locked nucleic acid probes localised miR-21 expression predominantly to fibroblasts within tumour-associated stroma To study the molecular and biological impact of deregulated stromal miR-21 in CRC, stable ectopic expression was induced in immortalised fibroblasts This resulted in upregulated α-smooth muscle actin expression implying miR-21 overexpression is driving the fibroblast-to-myofibroblast transdifferentiation Conditioned medium from miR-21-overexpressing fibroblasts protected CRC cells from oxaliplatin-induced apoptosis and increased their proliferative capacity 3D organotypic co-cultures containing fibroblasts and CRC cells revealed that ectopic stromal miR-21 expression was associated with increased epithelial invasiveness Reversion-inducing cysteine-rich protein with kazal motifs, an inhibitor of matrix-remodelling enzyme MMP2, was significantly downregulated by ectopic miR-21 in established and primary colorectal fibroblasts with a reciprocal rise in MMP2 activity Inhibition of MMP2 abrogated the invasion-promoting effects of ectopic miR-21 This data, which characterises a novel pro-metastatic mechanism mediated by miR-21 in the CRC stroma, highlights the importance of miRNA deregulation within the tumour microenvironment and identifies a potential application for stromal miRNAs as biomarkers in cancer

Journal ArticleDOI
TL;DR: Experiments show that human cancer cells can be induced by C/EBPα to transdifferentiate into seemingly normal cells at high frequencies and provide a proof of principle for a potential new therapeutic strategy for treating B cell malignancies.

Journal ArticleDOI
TL;DR: The data show that the basement membrane protein laminin suppresses the EMT response in MMP3-treated cells, whereas fibronectin promotes EMT.

Journal ArticleDOI
02 Dec 2013-PLOS ONE
TL;DR: It is demonstrated for the first time that adipose tissue is potentially a readily available and accessible source of keratinocytes, particularly for severe wounds encompassing large surface areas of the body and requiring prompt epithelialization.
Abstract: Skin regeneration is an important area of research in the field of tissue-engineering, especially for cases involving loss of massive areas of skin, where current treatments are not capable of inducing permanent satisfying replacements. Human adipose-derived stem cells (ASC) have been shown to differentiate in-vitro into both mesenchymal lineages and non-mesenchymal lineages, confirming their transdifferentiation ability. This versatile differentiation potential, coupled with their ease of harvest, places ASC at the advancing front of stem cell-based therapies. In this study, we hypothesized that ASC also have the capacity to transdifferentiate into keratinocyte-like cells and furthermore are able to engineer a stratified epidermis. ASC were successfully isolated from lipoaspirates and cell sorted (FACS). After sorting, ASC were either co-cultured with human keratinocytes or with keratinocyte conditioned media. After a 14-day incubation period, ASC developed a polygonal cobblestone shape characteristic of human keratinocytes. Western blot and q-PCR analysis showed the presence of specific keratinocyte markers including cytokeratin-5, involucrin, filaggrin and stratifin in these keratinocyte-like cells (KLC); these markers were absent in ASC. To further evaluate if KLC were capable of stratification akin to human keratinocytes, ASC were seeded on top of human decellularized dermis and cultured in the presence or absence of EGF and high Ca2+ concentrations. Histological analysis demonstrated a stratified structure similar to that observed in normal skin when cultured in the presence of EGF and high Ca2+. Furthermore, immunohistochemical analysis revealed the presence of keratinocyte markers such as involucrin, cytokeratin-5 and cytokeratin-10. In conclusion this study demonstrates for the first time that ASC have the capacity to transdifferentiate into KLC and engineer a stratified epidermis. This study suggests that adipose tissue is potentially a readily available and accessible source of keratinocytes, particularly for severe wounds encompassing large surface areas of the body and requiring prompt epithelialization.

Journal ArticleDOI
10 Dec 2013-PLOS ONE
TL;DR: It is found that culturing cells in conditions which permit cell spreading and increased contractility promotes the increased expression of myofibroblast markers and cytoskeletal associated proteins, and cell shape regulates the expression of cytOSkeletal proteins by controlling the subcellular localization of myocardin related transcription factor (MRTF)-A.
Abstract: Myofibroblasts, specialized cells that play important roles in wound healing and fibrosis, can develop from epithelial cells through an epithelial-mesenchymal transition (EMT). During EMT, epithelial cells detach from neighboring cells and acquire an elongated, mesenchymal-like morphology. These phenotypic changes are accompanied by changes in gene expression patterns including upregulation of a variety of cytoskeletal associated proteins which contribute to the ability of myofibroblasts to exert large contractile forces. Here, the relationship between cell shape and cytoskeletal tension and the expression of cytoskeletal proteins in transforming growth factor (TGF)-β1-induced EMT is determined. We find that culturing cells in conditions which permit cell spreading and increased contractility promotes the increased expression of myofibroblast markers and cytoskeletal associated proteins. In contrast, blocking cell spreading prevents transdifferentiation to the myofibroblast phenotype. Furthermore, we find that cell shape regulates the expression of cytoskeletal proteins by controlling the subcellular localization of myocardin related transcription factor (MRTF)-A. Pharmacological inhibition of cytoskeletal tension or MRTF-A signaling blocks the acquisition of a myofibroblast phenotype in spread cells while overexpression of MRTF-A promotes the expression of cytoskeletal proteins for all cell shapes. These data suggest that cell shape is a critical determinant of myofibroblast development from epithelial cells.

Journal ArticleDOI
TL;DR: Key developments in the generation of new cardiomyocytes in vitro as well as the exciting progress that has been made toward in vivo reprogramming of cardiac tissue are examined.
Abstract: There is much interest in the area of cardiac regeneration to replace cardiomyocytes lost in a heart attack. A number of recent studies have shown the feasibility of direct reprogramming, which allows one cell type to be directly converted into another cell type without going through a pluripotent intermediate step. In this Review, the authors review developments in direct reprogramming to cardiac cells in vitro and in vivo and compare the utility of these methods with pluripotent stem cell–mediated approaches.

Journal ArticleDOI
TL;DR: The results show that human skeletal muscle fibroblasts are at least bipotent progenitors that can remain as extracellular-matrix-producing cells or differentiate into adipocytes.
Abstract: We characterised the adherent cell types isolated from human skeletal muscle by enzymatic digestion, and demonstrated that even at 72 hours after isolation these cultures consisted predominantly of myogenic cells (CD56(+), desmin(+)) and fibroblasts (TE-7(+), collagen VI(+), PDGFRα(+), vimentin(+), fibronectin(+)). To evaluate the behaviour of the cell types obtained, we optimised a double immuno-magnetic cell-sorting method for the separation of myogenic cells from fibroblasts. This procedure gave purities of >96% for myogenic (CD56(+), desmin(+)) cells. The CD56(-) fraction obtained from the first sort was highly enriched in TE-7(+) fibroblasts. Using quantitative analysis of immunofluorescent staining for lipid content, lineage markers and transcription factors, we tested if the purified cell populations could differentiate into adipocytes in response to treatment with either fatty acids or adipocyte-inducing medium. Both treatments caused the fibroblasts to differentiate into adipocytes, as shown by loss of intracellular TE-7, upregulation of the adipogenic transcription factors PPARγ and C/EBPα, and adoption of a lipid-laden adipocyte morphology. By contrast, myogenic cells did not undergo adipogenesis and showed differential regulation of PPARγ and C/EBPα in response to these adipogenic treatments. Our results show that human skeletal muscle fibroblasts are at least bipotent progenitors that can remain as extracellular-matrix-producing cells or differentiate into adipocytes.

Journal ArticleDOI
TL;DR: The ROS-induced DNA damage response is dysfunctional in early asymptomatic stages of calcific aortic valve disease and an association among ROS, DNA-damage response, and cellular transdifferentiation is unveiled, reversible by antioxidant enzymes delivery.
Abstract: Objective— Accumulation of reactive oxygen species (ROS) and remodeling of the microstructure of the cusp characterize aortic valve sclerosis, the early phase of calcific aortic valve disease. These events are associated with activation of valvular interstitial cells (VICs) toward an osteogenic-like phenotype. Because ROS cause DNA damage and transcriptional activation we investigated the relationship between ROS, DNA damage response, and transdifferentiation of VICs. Methods and Results— Human aortic valve cusps and patient-matched VICs were collected from 39 patients both with and without calcific aortic valve disease. VICs were exposed to hydrogen peroxide (0.1–1 mmol/L) after cell transduction with extracellular superoxide dismutase/catalase adenoviruses and characterized for DNA-damage response, osteogenic transdifferentiation, and calcification. ROS induce relocalization of phosphorylated γH2AX, MRE11, and XRCC1 proteins with expression of osteogenic signaling molecule RUNX2 via AKT. We report a sustained activation of γH2AX in aortic valve sclerosis-derived VICs suggesting their impaired ability to repair DNA damage. Adenovirus superoxide dismutase/catalase transduction decreases ROS-induced DNA damage and VIC transdifferentiation in aortic valve sclerosis-derived cells. Finally, adenoviral transduction with catalase reverts ROS-mediated calcification and cellular transdifferentiation. Conclusion— We conclude that the ROS-induced DNA damage response is dysfunctional in early asymptomatic stages of calcific aortic valve disease. We unveiled an association among ROS, DNA-damage response, and cellular transdifferentiation, reversible by antioxidant enzymes delivery.

Journal ArticleDOI
TL;DR: Current challenges in the field of MSC cellular therapies for cardiac repair are discussed, including methods of cell delivery and the identification of molecular markers that accurately specify the therapeutically relevant mesenchymal cell types.
Abstract: Cell based treatments for myocardial infarction have demonstrated efficacy in the laboratory and in phase I clinical trials, but the understanding of such therapies remains incomplete. Mesenchymal stem cells (MSCs) are classically defined as maintaining the ability to generate mesenchyme-derived cell types, namely adipocytes, chondrocytes and osteocytes. Recent evidence suggests these cells may in fact harbor much greater potency than originally realized, as several groups have found that MSCs can form cardiac lineage cells in vitro. Additionally, experimental coculture of MSCs with cardiomyocytes appears to improve contractile function of the latter. Bolstered by such findings, several clinical trials have begun to test MSC transplantation for improving post-infarct cardiac function in human patients. The results of these trials have been mixed, underscoring the need to develop a deeper understanding of the underlying stem cell biology. To help synthesize the breadth of studies on the topic, this paper discusses current challenges in the field of MSC cellular therapies for cardiac repair, including methods of cell delivery and the identification of molecular markers that accurately specify the therapeutically relevant mesenchymal cell types. The various possible mechanisms of MSC mediated cardiac improvement, including somatic reprogramming, transdifferentiation, paracrine signaling, and direct electrophysiological coupling are also reviewed. Finally, we consider the traditional cell culture microenvironment, and the promise of cardiac tissue engineering to provide biomimetic in vitro model systems to more faithfully investigate MSC biology, helping to safely and effectively translate exciting discoveries in the laboratory to meaningful therapies in the clinic.

Journal ArticleDOI
TL;DR: The injection of a peroxisome proliferator-activated receptor-γ agonist, a selective Snail inhibitor, remarkably suppressed collagen deposition and cardiac fibrosis in mouse I/R injury, and significantly improved cardiac function and reduced Snail and CTGF expression in vivo are suggested.

Journal ArticleDOI
01 Oct 2013-Gut
TL;DR: The data show that Gata6 is required for the complete differentiation of acinar cells through multiple transcriptional regulatory mechanisms, which suggests that GATA6 alterations may contribute to diseases of the human adult exocrine pancreas.
Abstract: Objectives Previous studies have suggested an important role of the transcription factor Gata6 in endocrine pancreas, while GATA6 haploinsufficient inactivating mutations cause pancreatic agenesis in humans. We aimed to analyse the effects of Gata6 inactivation on pancreas development and function. Design We deleted Gata6 in all epithelial cells in the murine pancreas at the onset of its development. Acinar proliferation, apoptosis, differentiation and exocrine functions were assessed using reverse transcriptase quantitative PCR (RT-qPCR), chromatin immunoprecipitation, immunohistochemistry and enzyme assays. Adipocyte transdifferentiation was assessed using electron microscopy and genetic lineage tracing. Results Gata6 is expressed in all epithelial cells in the adult mouse pancreas but it is only essential for exocrine pancreas homeostasis: while dispensable for pancreatic development after e10.5, it is required for complete acinar differentiation, for establishment of polarity and for the maintenance of acinar cells in the adult. Gata6 regulates directly the promoter of genes coding for digestive enzymes and the transcription factors Rbpjl and Mist1 . Upon pancreas-selective Gata6 inactivation, massive loss of acinar cells and fat replacement take place. This is accompanied by increased acinar apoptosis and proliferation, acinar-to-ductal metaplasia and adipocyte transdifferentiation. By contrast, the endocrine pancreas is spared. Conclusions Our data show that Gata6 is required for the complete differentiation of acinar cells through multiple transcriptional regulatory mechanisms. In addition, it is required for the maintenance of the adult acinar cell compartment. Our studies suggest that GATA6 alterations may contribute to diseases of the human adult exocrine pancreas.

Journal ArticleDOI
TL;DR: Although compelling evidence shows that the adult pancreas retains regenerative capacity, it remains unclear whether this organ contains stem cells, and cellular reprogramming or transdifferentiation of exocrine cells or other types of endocrine cells in the Pancreas could provide a long-term solution.
Abstract: The endocrine pancreas represents an interesting arena for regenerative medicine and cell therapeutics. One of the major pancreatic diseases, diabetes mellitus is a metabolic disorder caused by having an insufficient number of insulin-producing β cells. Replenishment of β cells by cell transplantation can restore normal metabolic control. The shortage in donor pancreata has meant that the demand for transplantable β cells has outstripped the supply, which could be met by using alternative sources of stem cells. This situation has opened up new areas of research, such as cellular reprogramming and in vivo β-cell regeneration. Pluripotent stem cells seem to be the best option for clinical applications of β-cell regeneration in the near future, as these cells have been demonstrated to represent an unlimited source of functional β cells. Although compelling evidence shows that the adult pancreas retains regenerative capacity, it remains unclear whether this organ contains stem cells. Alternatively, specialized cell types within or outside the pancreas retain plasticity in proliferation and differentiation. Cellular reprogramming or transdifferentiation of exocrine cells or other types of endocrine cells in the pancreas could provide a long-term solution.