scispace - formally typeset
Search or ask a question

Showing papers on "Tumour heterogeneity published in 2019"


Journal ArticleDOI
13 Nov 2019-Nature
TL;DR: A reductionist approach is taken to define and separate the key determinants of drug resistance, which include tumour burden and growth kinetics; tumour heterogeneity; physical barriers; the immune system and the microenvironment; undruggable cancer drivers; and the many consequences of applying therapeutic pressures.
Abstract: The problem of resistance to therapy in cancer is multifaceted. Here we take a reductionist approach to define and separate the key determinants of drug resistance, which include tumour burden and growth kinetics; tumour heterogeneity; physical barriers; the immune system and the microenvironment; undruggable cancer drivers; and the many consequences of applying therapeutic pressures. We propose four general solutions to drug resistance that are based on earlier detection of tumours permitting cancer interception; adaptive monitoring during therapy; the addition of novel drugs and improved pharmacological principles that result in deeper responses; and the identification of cancer cell dependencies by high-throughput synthetic lethality screens, integration of clinico-genomic data and computational modelling. These different approaches could eventually be synthesized for each tumour at any decision point and used to inform the choice of therapy. A review of drug resistance in cancer analyses each biological determinant of resistance separately and discusses existing and new therapeutic strategies to combat the problem as a whole.

1,127 citations


Journal ArticleDOI
28 Mar 2019-Nature
TL;DR: It is suggested that the immune microenvironment exerts a strong selection pressure in early-stage, untreated non-small-cell lung cancers that produces multiple routes to immune evasion, which are clinically relevant and forecast poor disease-free survival.
Abstract: The interplay between an evolving cancer and a dynamic immune microenvironment remains unclear. Here we analyse 258 regions from 88 early-stage, untreated non-small-cell lung cancers using RNA sequencing and histopathology-assessed tumour-infiltrating lymphocyte estimates. Immune infiltration varied both between and within tumours, with different mechanisms of neoantigen presentation dysfunction enriched in distinct immune microenvironments. Sparsely infiltrated tumours exhibited a waning of neoantigen editing during tumour evolution, indicative of historical immune editing, or copy-number loss of previously clonal neoantigens. Immune-infiltrated tumour regions exhibited ongoing immunoediting, with either loss of heterozygosity in human leukocyte antigens or depletion of expressed neoantigens. We identified promoter hypermethylation of genes that contain neoantigenic mutations as an epigenetic mechanism of immunoediting. Our results suggest that the immune microenvironment exerts a strong selection pressure in early-stage, untreated non-small-cell lung cancers that produces multiple routes to immune evasion, which are clinically relevant and forecast poor disease-free survival.

563 citations


Journal ArticleDOI
TL;DR: The molecular mechanisms of resistance to osimertinib in patients with advanced EGFR-mutated NSCLC, including MET/HER2 amplification, activation of the RAS–mitogen-activated protein kinase (MAPK) or RAS-phosphatidylinositol 3-kinase (PI3K) pathways, novel fusion events and histological/phenotypic transformation are summarized.
Abstract: Osimertinib is an irreversible, third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor that is highly selective for EGFR-activating mutations as well as the EGFR T790M mutation in patients with advanced non-small cell lung cancer (NSCLC) with EGFR oncogene addiction. Despite the documented efficacy of osimertinib in first- and second-line settings, patients inevitably develop resistance, with no further clear-cut therapeutic options to date other than chemotherapy and locally ablative therapy for selected individuals. On account of the high degree of tumour heterogeneity and adaptive cellular signalling pathways in NSCLC, the acquired osimertinib resistance is highly heterogeneous, encompassing EGFR-dependent as well as EGFR-independent mechanisms. Furthermore, data from repeat plasma genotyping analyses have highlighted differences in the frequency and preponderance of resistance mechanisms when osimertinib is administered in a front-line versus second-line setting, underlying the discrepancies in selection pressure and clonal evolution. This review summarises the molecular mechanisms of resistance to osimertinib in patients with advanced EGFR-mutated NSCLC, including MET/HER2 amplification, activation of the RAS–mitogen-activated protein kinase (MAPK) or RAS–phosphatidylinositol 3-kinase (PI3K) pathways, novel fusion events and histological/phenotypic transformation, as well as discussing the current evidence regarding potential new approaches to counteract osimertinib resistance.

560 citations


Journal ArticleDOI
TL;DR: How circulate tumour cell (CTC) analysis at single-cell resolution provides unique insights into tumour heterogeneity that are not revealed by analysis of circulating tumour DNA (ctDNA) derived from liquid biopsies is discussed.
Abstract: Single-cell technologies have contributed to unravelling tumour heterogeneity, now considered a hallmark of cancer and one of the main causes of tumour resistance to cancer therapies. Liquid biopsy (LB), defined as the detection and analysis of cells or cell products released by tumours into the blood, offers an appealing minimally invasive approach that allows the characterization and monitoring of tumour heterogeneity in individual patients. Here, we will review and discuss how circulating tumour cell (CTC) analysis at single-cell resolution provides unique insights into tumour heterogeneity that are not revealed by analysis of circulating tumour DNA (ctDNA) derived from LBs. The molecular analysis of CTCs provides complementary information to that of genomic aberrations determined using ctDNA to fully describe many different cellular components (for example, DNA, RNA, proteins and metabolites) that can influence tumour heterogeneity.

339 citations


Journal ArticleDOI
28 Mar 2019-Nature
TL;DR: The results indicate that the activation of the glucocorticoid receptor increases heterogeneity and metastasis, which suggests that caution is needed when using glucOCorticoids to treat patients with breast cancer who have developed cancer-related complications.
Abstract: Diversity within or between tumours and metastases (known as intra-patient tumour heterogeneity) that develops during disease progression is a serious hurdle for therapy1-3. Metastasis is the fatal hallmark of cancer and the mechanisms of colonization, the most complex step in the metastatic cascade4, remain poorly defined. A clearer understanding of the cellular and molecular processes that underlie both intra-patient tumour heterogeneity and metastasis is crucial for the success of personalized cancer therapy. Here, using transcriptional profiling of tumours and matched metastases in patient-derived xenograft models in mice, we show cancer-site-specific phenotypes and increased glucocorticoid receptor activity in distant metastases. The glucocorticoid receptor mediates the effects of stress hormones, and of synthetic derivatives of these hormones that are used widely in the clinic as anti-inflammatory and immunosuppressive agents. We show that the increase in stress hormones during breast cancer progression results in the activation of the glucocorticoid receptor at distant metastatic sites, increased colonization and reduced survival. Our transcriptomics, proteomics and phospho-proteomics studies implicate the glucocorticoid receptor in the activation of multiple processes in metastasis and in the increased expression of kinase ROR1, both of which correlate with reduced survival. The ablation of ROR1 reduced metastatic outgrowth and prolonged survival in preclinical models. Our results indicate that the activation of the glucocorticoid receptor increases heterogeneity and metastasis, which suggests that caution is needed when using glucocorticoids to treat patients with breast cancer who have developed cancer-related complications.

253 citations


Journal ArticleDOI
TL;DR: Recognizing YAP and TAZ as a hub of the network of signals exchanged within the tumour microenvironment provides a fresh perspective on the molecular principles of tumour self-organization, promising to unveil numerous new vulnerabilities.
Abstract: YAP and TAZ are transcriptional activators pervasively induced in several human solid tumours and their functions in cancer cells are the focus of intense investigation. These studies established that YAP and TAZ are essential to trigger numerous cell-autonomous responses, such as sustained proliferation, cell plasticity, therapy resistance and metastasis. Yet tumours are complex entities, wherein cancer cells are just one of the components of a composite “tumour tissue”. The other component, the tumour stroma, is composed of an extracellular matrix with aberrant mechanical properties and other cell types, including cancer-associated fibroblasts and immune cells. The stroma entertains multiple and bidirectional interactions with tumour cells, establishing dependencies essential to unleash tumorigenesis. The molecular players of such interplay remain partially understood. Here, we review the emerging role of YAP and TAZ in choreographing tumour–stromal interactions. YAP and TAZ act within tumour cells to orchestrate responses in stromal cells. Vice versa, YAP and TAZ in stromal cells trigger effects that positively feed back on the growth of tumour cells. Recognizing YAP and TAZ as a hub of the network of signals exchanged within the tumour microenvironment provides a fresh perspective on the molecular principles of tumour self-organization, promising to unveil numerous new vulnerabilities. The transcriptional activators YAP and TAZ have been discussed mainly for their cell-autonomous functions in cancer. Recent studies suggest their emerging roles in orchestrating tumour–stroma interactions, acting as a signalling hub, as discussed in this Review article.

232 citations


Journal ArticleDOI
TL;DR: Recent advances in patient‐derived tumour xenograft and tumour organoid model systems are discussed and their promises and challenges as preclinical models in cancer research are compared.
Abstract: Patient-derived tumour xenografts and tumour organoids have become important preclinical model systems for cancer research. Both models maintain key features from their parental tumours, such as genetic and phenotypic heterogeneity, which allows them to be used for a wide spectrum of applications. In contrast to patient-derived xenografts, organoids can be established and expanded with high efficiency from primary patient material. On the other hand, xenografts retain tumour-stroma interactions, which are known to contribute to tumorigenesis. In this review, we discuss recent advances in patient-derived tumour xenograft and tumour organoid model systems and compare their promises and challenges as preclinical models in cancer research.

227 citations


Journal ArticleDOI
TL;DR: It is reported that the presence of prostate-specific membrane antigen (PSMA) is extremely variable both within one patient and between different patients, and this may limit the usefulness of PSMA scans and PSMA-targeted therapies.

217 citations


Journal ArticleDOI
21 Jun 2019-Gut
TL;DR: A novel immunophenotypic classification of HCCs is proposed that facilitates prognostic prediction and may support decision making with regard to the choice of therapy.
Abstract: Objective Hepatocellular carcinoma (HCC) is heterogeneous, especially in multifocal tumours, which decreases the efficacy of clinical treatments. Understanding tumour heterogeneity is critical when developing novel treatment strategies. However, a comprehensive investigation of tumour heterogeneity in HCC is lacking, and the available evidence regarding tumour heterogeneity has not led to improvements in clinical practice. Design We harvested 42 samples from eight HCC patients and evaluated tumour heterogeneity using whole-exome sequencing, RNA sequencing, mass spectrometry-based proteomics and metabolomics, cytometry by time-of-flight, and single-cell analysis. Immunohistochemistry and quantitative polymerase chain reactions were performed to confirm the expression levels of genes. Three independent cohorts were further used to validate the findings. Results Tumour heterogeneity is considerable with regard to the genomes, transcriptomes, proteomes, and metabolomes of lesions and tumours. The immune status of the HCC microenvironment was relatively less heterogenous. Targeting local immunity could be a suitable intervention with balanced precision and practicability. By clustering immune cells in the HCC microenvironment, we identified three distinctive HCC subtypes with immunocompetent, immunodeficient, and immunosuppressive features. We further revealed the specific metabolic features and cytokine/chemokine expression levels of the different subtypes. Determining the expression levels of CD45 and Foxp3 using immunohistochemistry facilitated the correct classification of HCC patients and the prediction of their prognosis. Conclusion There is comprehensive intratumoral and intertumoral heterogeneity in all dimensions of HCC. Based on the results, we propose a novel immunophenotypic classification of HCCs that facilitates prognostic prediction and may support decision making with regard to the choice of therapy.

190 citations


Journal ArticleDOI
TL;DR: The existence of extrachromosomal DNA (ecDNA) in cancer was first described decades ago, but recent reports of oncogene amplification on ecDNA have reinvigorated interest in this field.
Abstract: Recent reports have demonstrated that oncogene amplification on extrachromosomal DNA (ecDNA) is a frequent event in cancer, providing new momentum to explore a phenomenon first discovered several decades ago. The direct consequence of ecDNA gains in these cases is an increase in DNA copy number of the oncogenes residing on the extrachromosomal element. A secondary effect, perhaps even more important, is that the unequal segregation of ecDNA from a parental tumour cell to offspring cells rapidly increases tumour heterogeneity, thus providing the tumour with an additional array of responses to microenvironment-induced and therapy-induced stress factors and perhaps providing an evolutionary advantage. This Perspectives article discusses the current knowledge and potential implications of oncogene amplification on ecDNA in cancer.

190 citations


Journal ArticleDOI
TL;DR: The contribution of screening in general and high-risk populations to overdiagnosis, the effects of over Diagnosis on patients and emerging strategies to reduce over diagnosis of indolent cancers through an understanding of tumour biology and the tumour microenvironment are focused on.
Abstract: For cancer screening to be successful, it should primarily detect cancers with lethal potential or their precursors early, leading to therapy that reduces mortality and morbidity. Screening programmes have been successful for colon and cervical cancers, where subsequent surgical removal of precursor lesions has resulted in a reduction in cancer incidence and mortality. However, many types of cancer exhibit a range of heterogeneous behaviours and variable likelihoods of progression and death. Consequently, screening for some cancers may have minimal impact on mortality and may do more harm than good. Since the implementation of screening tests for certain cancers (for example, breast and prostate cancers), a spike in incidence of in situ and early-stage cancers has been observed, but a link to reduction in cancer-specific mortality has not been as clear. It is difficult to determine how many of these mortality reductions are due to screening and how many are due to improved treatments of tumours. In cancers with lower incidence but high mortality (for example, pancreatic cancer), screening has focused on high-risk populations, but challenges similar to those for general population screening remain, particularly with regard to finding lesions with difficult-to-characterize malignant potential (for example, intraductal papillary mucinous neoplasms). More sensitive screening methods are detecting smaller and smaller lesions, but this has not been accompanied by a comparable reduction in the incidence of invasive cancers. In this Opinion article, we focus on the contribution of screening in general and high-risk populations to overdiagnosis, the effects of overdiagnosis on patients and emerging strategies to reduce overdiagnosis of indolent cancers through an understanding of tumour heterogeneity, the biology of how cancers evolve and progress, the molecular and cellular features of early neoplasia and the dynamics of the interactions of early lesions with their surrounding tissue microenvironment. The implementation of screening tests for certain cancers has led to the phenomenon of overdiagnosis, whereby a cancer is diagnosed that would otherwise not go on to cause symptoms or death. This Opinion article discusses the effects of overdiagnosis and emerging strategies to reduce overdiagnosis of indolent cancers through an understanding of tumour biology and the tumour microenvironment.

Journal ArticleDOI
TL;DR: The detection of DNA repair aberrations could help select patients for poly(ADP-ribose) polymerase (PARP) inhibitor or platinum chemotherapy, and mismatch repair gene defects and microsatellite instability have been associated with responses to checkpoint inhibitor immunotherapy.
Abstract: Metastatic biopsy programmes combined with advances in genomic sequencing have provided new insights into the molecular landscape of castration-resistant prostate cancer (CRPC), identifying actionable targets, and emerging resistance mechanisms. The detection of DNA repair aberrations, such as mutation of BRCA2, could help select patients for poly(ADP-ribose) polymerase (PARP) inhibitor or platinum chemotherapy, and mismatch repair gene defects and microsatellite instability have been associated with responses to checkpoint inhibitor immunotherapy. Poor prognostic features, such as the presence of RB1 deletion, might help guide future therapeutic strategies. Our understanding of the molecular features of CRPC is now being translated into the clinic in the form of increased molecular testing for use of these agents and for clinical trial eligibility. Genomic testing offers opportunities for improving patient selection for systemic therapies and, ultimately, patient outcomes. However, challenges for precision oncology in advanced prostate cancer still remain, including the contribution of tumour heterogeneity, the timing and potential cooperation of multiple driver gene aberrations, and diverse resistant mechanisms. Defining the optimal use of molecular biomarkers in the clinic, including tissue-based and liquid biopsies, is a rapidly evolving field.

Journal ArticleDOI
TL;DR: The latest advances in technologies for personalised and in vitro preclinical studies using brain organoid models to better model glioblastoma and its interactions with the surrounding healthy brain tissue may play an essential role in developing new and more personalised treatments for this aggressive type of cancer.
Abstract: Glioblastoma is the deadliest form of brain cancer. Aside from inadequate treatment options, one of the main reasons glioblastoma is so lethal is the rapid growth of tumour cells coupled with continuous cell invasion into surrounding healthy brain tissue. Significant intra- and inter-tumour heterogeneity associated with differences in the corresponding tumour microenvironments contributes greatly to glioblastoma progression. Within this tumour microenvironment, the extracellular matrix profoundly influences the way cancer cells become invasive, and changes to extracellular (pH and oxygen levels) and metabolic (glucose and lactate) components support glioblastoma growth. Furthermore, studies on clinical samples have revealed that the tumour microenvironment is highly immunosuppressive which contributes to failure in immunotherapy treatments. Although technically possible, many components of the tumour microenvironment have not yet been the focus of glioblastoma therapies, despite growing evidence of its importance to glioblastoma malignancy. Here, we review recent progress in the characterisation of the glioblastoma tumour microenvironment and the sources of tumour heterogeneity in human clinical material. We also discuss the latest advances in technologies for personalised and in vitro preclinical studies using brain organoid models to better model glioblastoma and its interactions with the surrounding healthy brain tissue, which may play an essential role in developing new and more personalised treatments for this aggressive type of cancer.

Journal ArticleDOI
TL;DR: It is hypothesized that the variability in the outcomes of patients with T1 bladder cancer is a result of both tumour heterogeneity and pathological staging, as well as inconsistencies in risk stratification, endoscopic resection and schedules of delivery of BCG.
Abstract: Stage T1 bladder cancers invade the lamina propria of the bladder and, despite sharing many of the genetic features of muscle-invasive bladder cancers, are classified as non-muscle-invasive or ‘superficial’ tumours. Yet, patients with T1 bladder cancer have an overall mortality of 33% and a cancer-specific mortality of 14% at three years after diagnosis, suggesting that these patients have a high risk of progression and, accordingly, require meticulous surgery, endoscopic surveillance and clinical decision-making. We hypothesize that the variability in the outcomes of patients with T1 bladder cancer is a result of both tumour heterogeneity and pathological staging, as well as inconsistencies in risk stratification, endoscopic resection and schedules of delivery of BCG. Owing to limitations in clinical staging, patients with T1 bladder cancer are at risk of both undertreatment with persistent use of BCG despite recurrence, and overtreatment with early cystectomy. Understanding the molecular features of T1 bladder cancers and how they respond to BCG therapy could improve biomarkers for risk stratification to align therapy with biological risk. Patients with stage T1 bladder cancer require meticulous management owing to their high-risk of recurrence, progression and death. Here, Jordan and Meeks describe the natural history, diagnosis, and treatment of T1 bladder cancer, highlighting key challenges and areas of future investigation.

Journal ArticleDOI
TL;DR: Advances in the use of the cerebrospinal fluid as a source of cell-free tumour DNA to facilitate diagnosis, reveal actionable genomic alterations, monitor responses to therapy, and capture tumour heterogeneity in patients with primary brain tumours and brain and leptomeningeal metastases are focused on.

Journal ArticleDOI
TL;DR: The role of adaptive clinical trials in developing personalised treatment strategies to address intra- and inter-tumoral heterogeneity is discussed and the most promising therapeutic approaches for GBM to date appear to be those targeting GBM by vaccination or antibody- and cell-based immunotherapy.

Journal ArticleDOI
TL;DR: This work analyzes multi-region whole-exome and RNA sequencing data for 156 tumor regions from 48 patients enrolled in the TRACERx study to explore and control for RNA-ITH in non-small cell lung cancer and identifies genes expressed homogeneously within individual tumors that encode expression modules of cancer cell proliferation.
Abstract: An aim of molecular biomarkers is to stratify patients with cancer into disease subtypes predictive of outcome, improving diagnostic precision beyond clinical descriptors such as tumor stage1. Transcriptomic intratumor heterogeneity (RNA-ITH) has been shown to confound existing expression-based biomarkers across multiple cancer types2–6. Here, we analyze multi-region whole-exome and RNA sequencing data for 156 tumor regions from 48 patients enrolled in the TRACERx study to explore and control for RNA-ITH in non-small cell lung cancer. We find that chromosomal instability is a major driver of RNA-ITH, and existing prognostic gene expression signatures are vulnerable to tumor sampling bias. To address this, we identify genes expressed homogeneously within individual tumors that encode expression modules of cancer cell proliferation and are often driven by DNA copy-number gains selected early in tumor evolution. Clonal transcriptomic biomarkers overcome tumor sampling bias, associate with survival independent of clinicopathological risk factors, and may provide a general strategy to refine biomarker design across cancer types. TRACERx Lung: Intratumoral transcriptional heterogeneity, which often hinders the development of clinically useful RNA-expression-biased biomarkers for cancer, can now be overcome with an approach for the identification of clonal expression biomarkers.

Journal ArticleDOI
TL;DR: It is found that lung cancer cells with RASSF1A promoter methylation display constitutive nuclear YAP1 accumulation and expression of prolyl 4‐hydroxylase alpha‐2 (P4HA2) which increases collagen deposition which triggers cancer stem‐like programming and metastatic dissemination in vivo.
Abstract: Lung cancer remains the leading cause of cancer‐related death due to poor treatment responses and resistance arising from tumour heterogeneity. Here, we show that adverse prognosis associated with epigenetic silencing of the tumour suppressor RASSF1A is due to increased deposition of extracellular matrix (ECM), tumour stiffness and metastatic dissemination in vitro and in vivo. We find that lung cancer cells with RASSF1A promoter methylation display constitutive nuclear YAP1 accumulation and expression of prolyl 4‐hydroxylase alpha‐2 (P4HA2) which increases collagen deposition. Furthermore, we identify that elevated collagen creates a stiff ECM which in turn triggers cancer stem‐like programming and metastatic dissemination in vivo. Re‐expression of RASSF1A or inhibition of P4HA2 activity reverses these effects and increases markers of lung differentiation (TTF‐1 and Mucin 5B). Our study identifies RASSF1A as a clinical biomarker associated with mechanical properties of ECM which increases the levels of cancer stemness and risk of metastatic progression in lung adenocarcinoma. Moreover, we highlight P4HA2 as a potential target for uncoupling ECM signals that support cancer stemness.

Journal ArticleDOI
TL;DR: The potential of photoacoustic imaging to visualise features of the tumour microenvironment such as blood vessels, hypoxia, fibrosis and immune infiltrate to provide unprecedented insight into tumour biology is detailed.
Abstract: The tumour microenvironment (TME) is a complex cellular ecosystem subjected to chemical and physical signals that play a role in shaping tumour heterogeneity, invasion and metastasis. Studying the roles of the TME in cancer progression would strongly benefit from non-invasive visualisation of the tumour as a whole organ in vivo, both preclinically in mouse models of the disease, as well as in patient tumours. Although imaging techniques exist that can probe different facets of the TME, they face several limitations, including limited spatial resolution, extended scan times and poor specificity from confounding signals. Photoacoustic imaging (PAI) is an emerging modality, currently in clinical trials, that has the potential to overcome these limitations. Here, we review the biological properties of the TME and potential of existing imaging methods that have been developed to analyse these properties non-invasively. We then introduce PAI and explore the preclinical and clinical evidence that support its use in probing multiple features of the TME simultaneously, including blood vessel architecture, blood oxygenation, acidity, extracellular matrix deposition, lipid concentration and immune cell infiltration. Finally, we highlight the future prospects and outstanding challenges in the application of PAI as a tool in cancer research and as part of a clinical oncologist's arsenal.

Journal ArticleDOI
TL;DR: Patient-derived organoids may be valuable to predict individual responses to immunotherapy even in patients with low or no immunohistochemical PD-L1 expression, as well as to detect treatment effects of nivolumab, by quantitative and qualitative immunofluorescence and FACS analysis.
Abstract: Selection of cancer patients for treatment with immune checkpoint inhibitors remains a challenge due to tumour heterogeneity and variable biomarker detection. PD-L1 expression in 24 surgical chordoma specimen was determined immunohistochemically with antibodies 28-8 and E1L3N. The ability of patient-derived organoids to detect treatment effects of nivolumab was explored by quantitative and qualitative immunofluorescence and FACS analysis. The more sensitive antibody, E1L3N (ROC = 0.896, p = 0.001), was associated with greater tumour diameters (p = 0.014) and detected both tumour cells and infiltrating lymphocytes in 54% of patients, but only 1–15% of their cells. Organoids generated from PD-L1-positive patients contained both tumour cells and PD-1/CD8-positive lymphocytes and responded to nivolumab treatment with marked dose-dependent diameter reductions of up to 50% and increased cell death in both PD-L1-positive and negative organoids. Patient-derived organoids may be valuable to predict individual responses to immunotherapy even in patients with low or no immunohistochemical PD-L1 expression.

Journal ArticleDOI
TL;DR: Quantification of PD-L1 expression by immunohistochemistry was developed as a promising biomarker in clinical trials, but with many limitations, and other biomarkers, including tumour mutational burden and molecular signatures, are developed and discussed in this review.
Abstract: Renal cell carcinoma encompass distinct diseases with different pathologic features and distinct molecular pathways. Immune checkpoint inhibitors targeting the programmed death receptor ligand 1 (PD-L1)/programmed death receptor 1 (PD-1) pathway alone or in combination have greatly changed clinical management of metastatic renal cell carcinoma, now competing with antiangiogenic drugs in monotherapy for first-line treatment. However, long-term response rates are low, and biomarkers are needed to predict treatment response. Quantification of PD-L1 expression by immunohistochemistry was developed as a promising biomarker in clinical trials, but with many limitations (different antibodies, tumour heterogeneity, specimens, and different thresholds of positivity). Other biomarkers, including tumour mutational burden and molecular signatures, are also developed and discussed in this review.

Journal ArticleDOI
TL;DR: It is suggested that exosomes could play a pivotal role in N-Myc-driven aggressive neuroblastoma and transfer of chemoresistance between cells.
Abstract: Neuroblastoma accounts for 15% of childhood cancer mortality. Amplification of the oncogene N-Myc is a well-established poor prognostic marker for neuroblastoma. Whilst N-Myc amplification status strongly correlates with higher tumour aggression and resistance to treatment, the role of N-Myc in the aggressiveness of the disease is poorly understood. Exosomes are released by many cell types including cancer cells and are implicated as key mediators in cell-cell communication via the transfer of molecular cargo. Hence, characterising the exosomal protein components from N-Myc amplified and non-amplified neuroblastoma cells will improve our understanding on their role in the progression of neuroblastoma. In this study, a comparative proteomic analysis of exosomes isolated from cells with varying N-Myc amplification status was performed. Label-free quantitative proteomic profiling revealed 968 proteins that are differentially abundant in exosomes released by the neuroblastoma cells. Gene ontology-based analysis highlighted the enrichment of proteins involved in cell communication and signal transduction in N-Myc amplified exosomes. Treatment of SH-SY5Y cells with N-Myc amplified SK-N-BE2 cell-derived exosomes increased the migratory potential, colony forming abilities and conferred resistance to doxorubicin induced apoptosis. Incubation of exosomes from N-Myc knocked down SK-N-BE2 cells abolished the transfer of resistance to doxorubicin induced apoptosis. These findings suggest that exosomes could play a pivotal role in N-Myc-driven aggressive neuroblastoma and transfer of chemoresistance between cells. Abbreviations: RNA = ribonucleic acid; DNA = deoxyribonucleic acid; FCS = foetal calf serum; NTA = nanoparticle tracking analysis; LC-MS = liquid chromatography-mass spectrometry; KD = knockdown; LTQ = linear trap quadropole; TEM = transmission electron microscopy.

Journal ArticleDOI
TL;DR: CCL5/CCR5 is suggested to be an excellent new target for glioblastoma therapy and the molecular mechanisms, by which chemoattractant and receptor respond within the complex tissue microenvironment to promote cancer stem cells and tumour heterogeneity, should be considered in forthcoming studies.
Abstract: Background Glioblastoma is the most frequent and aggressive brain tumour in humans with median survival from 12 to 15 months after the diagnosis. This is mostly due to therapy resistant glioblastoma stem cells in addition to intertumour heterogeneity that is due to infiltration of a plethora of host cells. Besides endothelial cells, mesenchymal stem cells and their differentiated progenies, immune cells of various differentiation states, including monocytes, comprise resident, brain tumour microenvironment. There are compelling evidence for CCL5/CCR5 in the invasive and metastatic behaviour of many cancer types. CCR5, a G-protein coupled receptor, known to function as an essential co-receptor for HIV entry, is now known to participate in driving tumour heterogeneity, the formation of cancer stem cells and the promotion of cancer invasion and metastasis. Clinical trials have recently opened targeting CCR5 using a humanized monoclonal antibody (leronlimab) for metastatic triple negative breast cancer (TNBC) or a small molecule inhibitor (maraviroc) for metastatic colon cancer. There are important CCL5 and CCR5 structure and signalling mechanisms in glioblastoma. In addition, the CCL5/CCR5 axis directs infiltration and interactions with monocytes/macrophages and mesenchymal stem cells, comprising glioblastoma stem cell niches. Conclusions CCR5 is highly expressed in glioblastoma and is associated with poor prognosis of patients. CCL5/CCR5 is suggested to be an excellent new target for glioblastoma therapy. The molecular mechanisms, by which chemoattractant and receptor respond within the complex tissue microenvironment to promote cancer stem cells and tumour heterogeneity, should be considered in forthcoming studies.

Journal ArticleDOI
TL;DR: The recognition of the presence in tumours of intermediate hybrid epithelial/mesenchymal states as the most likely manifestation of epithelial plasticity and their potential link to stemness and tumour heterogeneity, provide new clues to understanding resistance and could be exploited in the search for anti-resistance strategies.
Abstract: Therapy resistance is responsible for tumour recurrence and represents one of the major challenges in present oncology. Significant advances have been made in the understanding of the mechanisms underlying resistance to conventional and targeted therapies improving the clinical management of relapsed patients. Unfortunately, in too many cases, resistance reappears leading to a fatal outcome. The recent introduction of immunotherapy regimes has provided an unprecedented success in the treatment of specific cancer types; however, a good percentage of patients do not respond to immune-based treatments or ultimately become resistant. Cellular plasticity, cancer cell stemness and tumour heterogeneity have emerged as important determinants of treatment resistance. Epithelial-to-mesenchymal transition (EMT) is associated with resistance in many different cellular and preclinical models, although little evidence derives directly from clinical samples. The recognition of the presence in tumours of intermediate hybrid epithelial/mesenchymal states as the most likely manifestation of epithelial plasticity and their potential link to stemness and tumour heterogeneity, provide new clues to understanding resistance and could be exploited in the search for anti-resistance strategies. Here, recent evidence linking EMT/epithelial plasticity to resistance against conventional, targeted and immune therapy are summarized. In addition, future perspectives for related clinical approaches are also discussed.

Journal ArticleDOI
02 Aug 2019
TL;DR: These heterocellular subtypes reveal transcriptome and cell-type based heterogeneity of luminal-A and other breast cancer subtypes that may be useful for additional understanding of the cancer type and potential patient stratification and personalized medicine.
Abstract: Breast cancer is a highly heterogeneous disease. Although differences between intrinsic breast cancer subtypes have been well studied, heterogeneity within each subtype, especially luminal-A cancers, requires further interrogation to personalize disease management. Here, we applied well-characterized and cancer-associated heterocellular signatures representing stem, mesenchymal, stromal, immune, and epithelial cell types to breast cancer. This analysis stratified the luminal-A breast cancer samples into five subtypes with a majority of them enriched for a subtype (stem-like) that has increased stem and stromal cell gene signatures, representing potential luminal progenitor origin. The enrichment of immune checkpoint genes and other immune cell types in two (including stem-like) of the five heterocellular subtypes of luminal-A tumors suggest their potential response to immunotherapy. These immune-enriched subtypes of luminal-A tumors (containing only estrogen receptor positive samples) showed good or intermediate prognosis along with the two other differentiated subtypes as assessed using recurrence-free and distant metastasis-free patient survival outcomes. On the other hand, a partially differentiated subtype of luminal-A breast cancer with transit-amplifying colon-crypt characteristics showed poor prognosis. Furthermore, published luminal-A subtypes associated with specific somatic copy number alterations and mutations shared similar cellular and mutational characteristics to colorectal cancer subtypes where the heterocellular signatures were derived. These heterocellular subtypes reveal transcriptome and cell-type based heterogeneity of luminal-A and other breast cancer subtypes that may be useful for additional understanding of the cancer type and potential patient stratification and personalized medicine.

Book ChapterDOI
TL;DR: The present manuscript will describe the main characteristic features of cancer stem cells in osteosarcoma and will discuss their impact on maintaining tumour heterogeneity and their clinical implications will be briefly addressed.
Abstract: Osteosarcoma is the most common bone sarcoma and is one of the cancer entities characterized by the highest level of heterogeneity in humans. This heterogeneity takes place not only at the macroscopic and microscopic levels, with heterogeneous micro-environmental components, but also at the genomic, transcriptomic and epigenetic levels. Recent investigations have revealed the existence in osteosarcoma of cancer cells with stemness properties. Cancer stem cells are characterized by their specific phenotype and low cycling capacity, and are linked to drug resistance, tumour growth and the metastatic process. In addition, cancer stem cells contribute to the enrichment of tumour heterogeneity. The present manuscript will describe the main characteristic features of cancer stem cells in osteosarcoma and will discuss their impact on maintaining tumour heterogeneity. Their clinical implications will also be briefly addressed.

Book ChapterDOI
TL;DR: This chapter will be mainly discussed the emerging knowledge regarding the contribution of BCSCs to tumour heterogeneity, their plasticity, and the role that this plasticity can play in the establishment of distant metastasis.
Abstract: In the last 20 years, the conventional view of breast cancer as a homogeneous collection of highly proliferating malignant cells was totally replaced by a model of increased complexity, which points out that breast carcinomas are tissues composed of multiple populations of transformed cells. A large diversity of host cells and structural components of the extracellular matrix constitute the mammary tumour microenvironment, which supports its growth and progression, where individual cancer cells evolve with cumulative phenotypic and genetic heterogeneity. Moreover, contributing to this heterogeneity, it has been demonstrated that breast cancers can exhibit a hierarchical organization composed of tumour cells displaying divergent lineage biomarkers and where, at the apex of this hierarchy, some neoplastic cells are able to self-renew and to aberrantly differentiate. Breast cancer stem cells (BCSCs), as they were entitled, not only drive tumourigenesis, but also mediate metastasis and contribute to therapy resistance.

Journal ArticleDOI
12 Sep 2019-eLife
TL;DR: It is found that inhibition of OxPhos in neural stem cells (NSCs) or tumours in the Drosophila brain not only decreases proliferation, but also affects many different aspects of stem cell behaviour.
Abstract: Translating advances in cancer research to clinical applications requires better insight into the metabolism of normal cells and tumour cells in vivo. Much effort has focused on understanding how glycolysis and oxidative phosphorylation (OxPhos) support proliferation, while their impact on other aspects of development and tumourigenesis remain largely unexplored. We found that inhibition of OxPhos in neural stem cells (NSCs) or tumours in the Drosophila brain not only decreases proliferation, but also affects many different aspects of stem cell behaviour. In NSCs, OxPhos dysfunction leads to a protracted G1/S-phase and results in delayed temporal patterning and reduced neuronal diversity. As a consequence, NSCs fail to undergo terminal differentiation, leading to prolonged neurogenesis into adulthood. Similarly, in brain tumours inhibition of OxPhos slows proliferation and prevents differentiation, resulting in reduced tumour heterogeneity. Thus, in vivo, highly proliferative stem cells and tumour cells require OxPhos for efficient growth and generation of diversity.

Journal ArticleDOI
TL;DR: In conclusion, although many studies report encouraging results, further technical development and larger studies are warranted before applying ctDNA analysis for early cancer detection in the clinic.
Abstract: In recent years, detection of cell-free tumour DNA (ctDNA) or liquid biopsy has emerged as an attractive noninvasive methodology to detect cancer-specific genetic aberrations in plasma, and numerous studies have reported on the feasibility of ctDNA in advanced cancer. In particular, ctDNA assays can capture a more 'global' portrait of tumour heterogeneity, monitor therapy response, and lead to early detection of resistance mutations. More recently, ctDNA analysis has also been proposed as a promising future tool for detection of early cancer and/or cancer screening. As the average proportion of mutated DNA in plasma is very low (0.4% even in advanced cancer), exceedingly sensitive techniques need to be developed. In addition, as tumours are genetically heterogeneous, any screening test needs to assay multiple genetic targets in order to increase the chances of detection. Further research on the genetic progression from normal to cancer cells and their release of ctDNA is imperative in order to avoid overtreating benign/indolent lesions, causing more harm than good by early diagnosis. More knowledge on the sources and elimination of cell-free DNA will enable better interpretation in older individuals and those with comorbidities. In addition, as white blood cells are the major source of cell-free DNA in plasma, it is important to distinguish acquired mutations in leukocytes (benign clonal haematopoiesis) from an upcoming haematological malignancy or other cancer. In conclusion, although many studies report encouraging results, further technical development and larger studies are warranted before applying ctDNA analysis for early cancer detection in the clinic.

Journal ArticleDOI
TL;DR: Using metastatic melanoma as a prototypical example, single cell analyses are focused on applying to the study of clonal trajectories which guide the evolution of drug resistance to targeted therapy.
Abstract: Originally described as interpatient variability, tumour heterogeneity has now been demonstrated to occur intrapatiently, within the same lesion, or in different lesions of the same patient. Tumour heterogeneity involves both genetic and epigenetic changes. Intrapatient heterogeneity is responsible for generating subpopulations of cancer cells which undergo clonal evolution with time. Tumour heterogeneity develops also as a consequence of the selective pressure imposed by the immune system. It has been demonstrated that tumour heterogeneity and different spatiotemporal interactions between all the cellular compontents within the tumour microenvironment lead to cancer adaptation and to therapeutic pressure. In this context, the recent advent of single cell analysis approaches which are able to better study tumour heterogeneity from the genomic, transcriptomic and proteomic standpoint represent a major technological breakthrough. In this review, using metastatic melanoma as a prototypical example, we will focus on applying single cell analyses to the study of clonal trajectories which guide the evolution of drug resistance to targeted therapy.