scispace - formally typeset
Search or ask a question
Institution

Cardiff University

EducationCardiff, United Kingdom
About: Cardiff University is a education organization based out in Cardiff, United Kingdom. It is known for research contribution in the topics: Population & Context (language use). The organization has 34188 authors who have published 82643 publications receiving 3046531 citations. The organization is also known as: University of Cardiff & University College of South Wales and Monmouthshire.


Papers
More filters
Journal ArticleDOI
TL;DR: A polymer with a rigid, randomly contorted molecular structure, incorporating fused rings connected by spiro-centres, may be precipitated or cast from solution to give microporous powders and membranes stable up to temperatures of 350°C, with apparent surface areas > 600m2
Abstract: A polymer with a rigid, randomly contorted molecular structure (see Figure), incorporating fused rings connected by spiro-centres, may be precipitated or cast from solution to give microporous powders and membranes stable up to temperatures of 350 °C, with apparent surface areas > 600 m2 g–1. Organophilic membranes may be formed, as demonstrated by the separation of phenol from water by pervaporation.

762 citations

Patent
18 May 2005
TL;DR: In this paper, a device for morcellating tissue within a body cavity of a patient comprises a stationary tube (8) having a distal end portion (12), and a bipolar electrosurgical electrode assembly (13) located at the distal part of the tube.
Abstract: A device for morcellating tissue within a body cavity of a patient comprises a stationary tube (8) having a distal end portion (12), and a bipolar electrosurgical electrode assembly (13) located at the distal end of the tube. The electrosurgical electrode assembly (13) comprises first and second electrodes (14, 16) separated by an insulation member (15), the bipolar electrosurgical electrode assembly extending around the circumference of the distal edge of the tube (8). When an electrosurgical cutting voltage is applied to the electrode assembly (13), and relative movement is initiated between the tube (8) and the tissue, a core of severed tissue is formed within the tube such that it can be removed from the body cavity of the patient. A tissue-pulling device (2) such as a jaw assembly (24) can be employed to pull tissue against the distal end of the tube (8).

761 citations

Journal ArticleDOI
TL;DR: In this article, a new frequency-domain phenomenological model of the gravitational-wave signal from the inspiral, merger and ringdown of non-precessing (aligned-spin) black-hole binaries is presented.
Abstract: We present a new frequency-domain phenomenological model of the gravitational-wave signal from the inspiral, merger and ringdown of nonprecessing (aligned-spin) black-hole binaries. The model is calibrated to 19 hybrid effective-one-body–numerical-relativity waveforms up to mass ratios of 1∶18 and black-hole spins of |a/m|∼0.85 (0.98 for equal-mass systems). The inspiral part of the model consists of an extension of frequency-domain post-Newtonian expressions, using higher-order terms fit to the hybrids. The merger ringdown is based on a phenomenological ansatz that has been significantly improved over previous models. The model exhibits mismatches of typically less than 1% against all 19 calibration hybrids and an additional 29 verification hybrids, which provide strong evidence that, over the calibration region, the model is sufficiently accurate for all relevant gravitational-wave astronomy applications with the Advanced LIGO and Virgo detectors. Beyond the calibration region the model produces physically reasonable results, although we recommend caution in assuming that any merger-ringdown waveform model is accurate outside its calibration region. As an example, we note that an alternative nonprecessing model, SEOBNRv2 (calibrated up to spins of only 0.5 for unequal-mass systems), exhibits mismatch errors of up to 10% for high spins outside its calibration region. We conclude that waveform models would benefit most from a larger number of numerical-relativity simulations of high-aligned-spin unequal-mass binaries.

758 citations

Journal ArticleDOI
TL;DR: Although the mortality reduction was not significant in the primary analysis, it was noted a significant mortality reduction with MMS when prevalent cases were excluded, and encouraging evidence of a mortality reduction in years 7–14 was noted.

756 citations

Journal ArticleDOI
TL;DR: In this paper, the results of the Herschel Gould Belt survey toward the IC 5146 molecular cloud were analyzed and a preliminary analysis of the filamentary structure in this region was presented.
Abstract: We provide a first look at the results of the Herschel Gould Belt survey toward the IC 5146 molecular cloud and present a preliminary analysis of the filamentary structure in this region. The column density map, derived from our 70–500 μm Herschel data, reveals a complex network of filaments and confirms that these filaments are the main birth sites of prestellar cores. We analyze the column density profiles of 27 filaments and show that the underlying radial density profiles fall off as r-1.5 to r-2.5 at large radii. Our main result is that the filaments seem to be characterized by a narrow distribution of widths with a median value of 0.10 ± 0.03 pc, which is in stark contrast to a much broader distribution of central Jeans lengths. This characteristic width of ~0.1 pc corresponds to within a factor of ~2 to the sonic scale below which interstellar turbulence becomes subsonic in diffuse gas, which supports the argument that the filaments may form as a result of the dissipation of large-scale turbulence.

753 citations


Authors

Showing all 34629 results

NameH-indexPapersCitations
Rob Knight2011061253207
Stephen V. Faraone1881427140298
John J.V. McMurray1781389184502
David R. Williams1782034138789
John Hardy1771178171694
Dorret I. Boomsma1761507136353
Kay-Tee Khaw1741389138782
Anders Björklund16576984268
Edward T. Bullmore165746112463
Peter A. R. Ade1621387138051
Michael John Owen1601110135795
Gavin Davies1592036149835
Suvadeep Bose154960129071
Todd Adams1541866143110
John R. Hodges14981282709
Network Information
Related Institutions (5)
University of Manchester
168K papers, 6.4M citations

98% related

University College London
210.6K papers, 9.8M citations

97% related

University of Bristol
113.1K papers, 4.9M citations

96% related

University of Edinburgh
151.6K papers, 6.6M citations

95% related

University of Cambridge
282.2K papers, 14.4M citations

95% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023139
2022769
20214,868
20204,931
20194,464
20184,379