scispace - formally typeset
Search or ask a question
Institution

Cardiff University

EducationCardiff, United Kingdom
About: Cardiff University is a education organization based out in Cardiff, United Kingdom. It is known for research contribution in the topics: Population & Context (language use). The organization has 34188 authors who have published 82643 publications receiving 3046531 citations. The organization is also known as: University of Cardiff & University College of South Wales and Monmouthshire.


Papers
More filters
Journal ArticleDOI
21 Nov 1970-Nature
TL;DR: The work described here was intended to add to present theoretical knowledge of stability in large systems, for instability usually appears as a self-generating catastrophe.
Abstract: MANY systems being studied today are dynamic, large and complex: traffic at an airport with 100 planes, slum areas with 104 persons or the human brain with 1010 neurones. In such systems, stability is of central importance, for instability usually appears as a self-generating catastrophe. Unfortunately, present theoretical knowledge of stability in large systems is meagre: the work described here was intended to add to it.

711 citations

Journal ArticleDOI
TL;DR: The environmental and microbiological factors that can influence heavy metal toxicity are discussed with a view to understanding the mechanisms of microbial metal tolerance.
Abstract: The environmental and microbiological factors that can influence heavy metal toxicity are discussed with a view to understanding the mechanisms of microbial metal tolerance. It is apparent that metal toxicity can be heavily influenced by environmental conditions. Binding of metals to organic materials, precipitation, complexation, and ionic interactions are all important phenomena that must be considered carefully in laboratory and field studies. It is also obvious that microbes possess a range of tolerance mechanisms, most featuring some kind of detoxification. Many of these detoxification mechanisms occur widely in the microbial world and are not only specific to microbes growing in metal-contaminated environments.

710 citations

Journal ArticleDOI
TL;DR: This review examines the current understanding of the molecular genetics of colorectal carcinogenesis and concludes that gastroenterologists have a working knowledge of the pathological mechanisms that drive the disease.
Abstract: Colorectal cancer is a common but heterogeneous disease, which arises through the accumulation of genetic mutations Knowledge of the molecular basis of colorectal cancer has advanced at a rapid pace in recent years, reflecting progress made in the field of genomic medicine Targeted therapies have come into mainstream use, and the exciting prospect of treatment regimens tailored to the mutation profile of individual tumours is beginning to emerge In order to understand the development and application of the next generation of colorectal cancer treatments, it is important that gastroenterologists have a working knowledge of the pathological mechanisms that drive the disease This review examines our current understanding of the molecular genetics of colorectal carcinogenesis

708 citations

Journal ArticleDOI
Seb Oliver1, James J. Bock2, James J. Bock3, Bruno Altieri4, Alexandre Amblard5, V. Arumugam6, Herve Aussel7, Tom Babbedge8, Alexandre Beelen, Matthieu Béthermin7, Andrew Blain3, Alessandro Boselli9, C. Bridge3, Drew Brisbin10, V. Buat9, Denis Burgarella9, N. Castro-Rodríguez11, N. Castro-Rodríguez12, Antonio Cava13, P. Chanial7, Michele Cirasuolo14, David L. Clements8, A. Conley15, L. Conversi4, Asantha Cooray16, Asantha Cooray3, C. D. Dowell3, C. D. Dowell2, Elizabeth Dubois1, Eli Dwek17, Simon Dye18, Stephen Anthony Eales19, David Elbaz7, Duncan Farrah1, A. Feltre20, P. Ferrero11, P. Ferrero12, N. Fiolet21, M. Fox8, Alberto Franceschini20, Walter Kieran Gear19, E. Giovannoli9, Jason Glenn15, Yan Gong16, E. A. González Solares22, Matthew Joseph Griffin19, Mark Halpern23, Martin Harwit, Evanthia Hatziminaoglou, Sebastien Heinis9, Peter Hurley1, Ho Seong Hwang7, A. Hyde8, Edo Ibar14, O. Ilbert9, K. G. Isaak24, Rob Ivison14, Rob Ivison6, Guilaine Lagache, E. Le Floc'h7, L. R. Levenson3, L. R. Levenson2, B. Lo Faro20, Nanyao Y. Lu3, S. C. Madden7, Bruno Maffei25, Georgios E. Magdis7, G. Mainetti20, Lucia Marchetti20, G. Marsden23, J. Marshall2, J. Marshall3, A. M. J. Mortier8, Hien Nguyen3, Hien Nguyen2, B. O'Halloran8, Alain Omont21, Mat Page26, P. Panuzzo7, Andreas Papageorgiou19, H. Patel8, Chris Pearson27, Chris Pearson28, Ismael Perez-Fournon11, Ismael Perez-Fournon12, Michael Pohlen19, Jonathan Rawlings26, Gwenifer Raymond19, Dimitra Rigopoulou29, Dimitra Rigopoulou27, L. Riguccini7, D. Rizzo8, Giulia Rodighiero20, Isaac Roseboom6, Isaac Roseboom1, Michael Rowan-Robinson8, M. Sanchez Portal4, Benjamin L. Schulz3, Douglas Scott23, Nick Seymour26, Nick Seymour30, D. L. Shupe3, A. J. Smith1, Jamie Stevens31, M. Symeonidis26, Markos Trichas32, K. E. Tugwell26, Mattia Vaccari20, Ivan Valtchanov4, Joaquin Vieira3, Marco P. Viero3, L. Vigroux21, Lifan Wang1, Robyn L. Ward1, Julie Wardlow16, G. Wright14, C. K. Xu3, Michael Zemcov2, Michael Zemcov3 
TL;DR: The Herschel Multi-tiered Extragalactic Survey (HerMES) is a legacy program designed to map a set of nested fields totalling ~380 deg^2 as mentioned in this paper.
Abstract: The Herschel Multi-tiered Extragalactic Survey, HerMES, is a legacy program designed to map a set of nested fields totalling ~380 deg^2. Fields range in size from 0.01 to ~20 deg^2, using Herschel-SPIRE (at 250, 350 and 500 \mu m), and Herschel-PACS (at 100 and 160 \mu m), with an additional wider component of 270 deg^2 with SPIRE alone. These bands cover the peak of the redshifted thermal spectral energy distribution from interstellar dust and thus capture the re-processed optical and ultra-violet radiation from star formation that has been absorbed by dust, and are critical for forming a complete multi-wavelength understanding of galaxy formation and evolution. The survey will detect of order 100,000 galaxies at 5\sigma in some of the best studied fields in the sky. Additionally, HerMES is closely coordinated with the PACS Evolutionary Probe survey. Making maximum use of the full spectrum of ancillary data, from radio to X-ray wavelengths, it is designed to: facilitate redshift determination; rapidly identify unusual objects; and understand the relationships between thermal emission from dust and other processes. Scientific questions HerMES will be used to answer include: the total infrared emission of galaxies; the evolution of the luminosity function; the clustering properties of dusty galaxies; and the properties of populations of galaxies which lie below the confusion limit through lensing and statistical techniques. This paper defines the survey observations and data products, outlines the primary scientific goals of the HerMES team, and reviews some of the early results.

707 citations

Journal ArticleDOI
TL;DR: Fibrocartilage is a dynamic tissue that disappears when the tendons are rerouted surgically and can be maintained in vitro when discs of tendon are compressed, but at some locations fibrocartilaginous is a sign of pathology.
Abstract: Where tendons and ligaments are subject to compression, they are frequently fibrocartilaginous. This occurs at 2 principal sites: where tendons (and sometimes ligaments) wrap around bony or fibrous pulleys, and in the region where they attach to bone, i.e. at their entheses. Wrap-around tendons are most characteristic of the limbs and are commonly wider at their point of bony contact so that the pressure is reduced. The most fibrocartilaginous tendons are heavily loaded and permanently bent around their pulleys. There is often pronounced interweaving of collagen fibres that prevents the tendons from splaying apart under compression. The fibrocartilage can be located within fascicles, or in endo- or epitenon (where it may protect blood vessels from compression or allow fascicles to slide). Fibrocartilage cells are commonly packed with intermediate filaments which could be involved in transducing mechanical load. The ECM often contains aggrecan which allows the tendon to imbibe water and withstand compression. Type II collagen may also be present, particularly in tendons that are heavily loaded. Fibrocartilage is a dynamic tissue that disappears when the tendons are rerouted surgically and can be maintained in vitro when discs of tendon are compressed. Finite element analyses provide a good correlation between its distribution and levels of compressive stress, but at some locations fibrocartilage is a sign of pathology. Enthesis fibrocartilage is most typical of tendons or ligaments that attach to the epiphyses of long bones where it may also be accompanied by sesamoid and periosteal fibrocartilages. It is characteristic of sites where the angle of attachment changes throughout the range of joint movement and it reduces wear and tear by dissipating stress concentration at the bony interface. There is a good correlation between the distribution of fibrocartilage within an enthesis and the levels of compressive stress. The complex interlocking between calcified fibrocartilage and bone contributes to the mechanical strength of the enthesis and cartilage-like molecules (e.g. aggrecan and type II collagen) in the ECM contribute to its ability to withstand compression. Pathological changes are common and are known as enthesopathies.

705 citations


Authors

Showing all 34629 results

NameH-indexPapersCitations
Rob Knight2011061253207
Stephen V. Faraone1881427140298
John J.V. McMurray1781389184502
David R. Williams1782034138789
John Hardy1771178171694
Dorret I. Boomsma1761507136353
Kay-Tee Khaw1741389138782
Anders Björklund16576984268
Edward T. Bullmore165746112463
Peter A. R. Ade1621387138051
Michael John Owen1601110135795
Gavin Davies1592036149835
Suvadeep Bose154960129071
Todd Adams1541866143110
John R. Hodges14981282709
Network Information
Related Institutions (5)
University of Manchester
168K papers, 6.4M citations

98% related

University College London
210.6K papers, 9.8M citations

97% related

University of Bristol
113.1K papers, 4.9M citations

96% related

University of Edinburgh
151.6K papers, 6.6M citations

95% related

University of Cambridge
282.2K papers, 14.4M citations

95% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023139
2022769
20214,868
20204,931
20194,464
20184,379