scispace - formally typeset
Search or ask a question

Showing papers by "Central Drug Research Institute published in 2013"


Journal ArticleDOI
TL;DR: It is demonstrated that ROS dependent activation of ERK and p38 MAPK, which mediated PMA induced NETs release from human neutrophils, was downstream to free radical generation.
Abstract: Neutrophils/polymorphonuclear leukocytes (PMNs), an important component of innate immune system, release extracellular traps (NETs) to eliminate invaded pathogens; however understanding of the role of signaling molecules/proteins need to be elucidated. In the present study role of p38 MAPK and extracellular signal regulated kinase (ERK) against phorbol 12-myristate 13-acetate (PMA) induced reactive oxygen species (ROS) generation and NETs formation has been investigated. Human neutrophils were treated with PMA to induce free radical generation and NETs release, which were monitored by NBT reduction and elastase/DNA release, respectively. PMA treatment led to the time dependent phosphorylation of p38 MAPK and ERK in PMNs. Pretreatment of PMNs with SB202190 or U0126 did not significantly reduce PMA induce free radical generation, but prevented NETs release. Pretreatment of PMNs with NADPH oxidase inhibitor (diphenyleneiodonium chloride) significantly reduced free radical generation, p38 MAPK and ERK phosphorylation as well as NETs release, suggesting that p38 MAPK and ERK activation was downstream to free radical generation. The present study thus demonstrates ROS dependent activation of ERK and p38 MAPK, which mediated PMA induced NETs release from human neutrophils.

213 citations


Journal ArticleDOI
TL;DR: It is important to consider the interactions and crosstalk between these three chemokine receptors and their ligand mediated signaling cascades for the development of effective anti-cancer therapies.

166 citations


Journal ArticleDOI
TL;DR: The studies suggest that soybean genistein can epigenetically restore ERα expression, which in turn increases TAM-dependent anti-estrogen therapeutic sensitivity in vitro and in vivo and will provide more effective options in breast cancer therapy.
Abstract: Estrogen receptor-α (ERα)-negative breast cancer is clinically aggressive and normally does not respond to conventional estrogen target-directed therapies. The soybean isoflavone, genistein (GE), has been shown to prevent and inhibit breast cancer and recent studies have suggested that GE can enhance the anticancer capacity of an estrogen antagonist, tamoxifen (TAM), especially in ERα-positive breast cancer cells. However, the role of GE in ERα-negative breast cancer remains unknown. We have evaluated the in vitro and in vivo epigenetic effects of GE on ERα reactivation by using MTT assay, real-time reverse transcription-polymerase chain reaction (RT-PCR) assay, western-blot assay, immunoprecipitation (ChIP) assay, immunohistochemistry and epigenetic enzymatic activity analysis. Preclinical mouse models including xenograft and spontaneous breast cancer mouse models were used to test the efficacy of GE in vivo. We found that GE can reactivate ERα expression and this effect was synergistically enhanced when combined with a histone deacetylase (HDAC) inhibitor, trichostatin A (TSA), in ERα-negative MDA-MB-231 breast cancer cells. GE treatment also re-sensitized ERα-dependent cellular responses to activator 17β-estradiol (E2) and antagonist TAM. Further studies revealed that GE can lead to remodeling of the chromatin structure in the ERα promoter thereby contributing to ERα reactivation. Consistently, dietary GE significantly prevented cancer development and reduced the growth of ERα-negative mouse breast tumors. Dietary GE further enhanced TAM-induced anti-cancer efficacy due at least in part to epigenetic ERα reactivation. Our studies suggest that soybean genistein can epigenetically restore ERα expression, which in turn increases TAM-dependent anti-estrogen therapeutic sensitivity in vitro and in vivo. The results from our studies reveal a novel therapeutic combination approach using bioactive soybean product and anti-hormone therapy in refractory ERα-negative breast cancer which will provide more effective options in breast cancer therapy.

157 citations


Journal ArticleDOI
TL;DR: Different adipokine- and cytokine-mediated molecular signaling pathways involved in obesity-associated breast cancer, available therapeutic strategies and potential therapeutic targets for obesity- associated breast cancer are discussed.

135 citations


Journal ArticleDOI
TL;DR: The results indicate that compounds 8a, 8g, and 9f represent a new structural lead for this serious and neglected disease.
Abstract: The high potential of quinazolinone containing natural products and their derivatives in medicinal chemistry led us to discover four novel series of 53 compounds of quinazolinone based on the concept of molecular hybridization. Most of the synthesized analogues exhibited potent leishmanicidal activity against intracellular amastigotes (IC50 from 0.65 ± 0.2 to 7.76 ± 2.1 μM) as compared to miltefosine (IC50 = 8.4 ± 2.1 μM) and nontoxic toward the J-774A.1 cell line and Vero cells. Moreover, activation of Th1 type and suppression of Th2 type immune responses and induction in nitric oxide generation proved that 8a and 8g induce murine macrophages to prevent survival of parasites. Compounds 8a and 8g exhibited significant in vivo inhibition of parasite 73.15 ± 12.69% and 80.93 ± 10.50% against Leishmania donovani /hamster model. Our results indicate that compounds 8a, 8g, and 9f represent a new structural lead for this serious and neglected disease.

118 citations



Journal ArticleDOI
TL;DR: It is suggested that WFA stimulates bone formation by abrogating proteasomal machinery and provides knowledge base for its clinical evaluation as a bone anabolic agent.
Abstract: Withania somnifera or Ashwagandha is a medicinal herb of Ayurveda. Though the extract and purified molecules, withanolides, from this plant have been shown to have different pharmacological activities, their effect on bone formation has not been studied. Here, we show that one of the withanolide, withaferin A (WFA) acts as a proteasomal inhibitor (PI) and binds to specific catalytic β subunit of the 20S proteasome. It exerts positive effect on osteoblast by increasing osteoblast proliferation and differentiation. WFA increased expression of osteoblast-specific transcription factor and mineralizing genes, promoted osteoblast survival and suppressed inflammatory cytokines. In osteoclast, WFA treatment decreased osteoclast number directly by decreasing expression of tartarate-resistant acid phosphatase and receptor activator of nuclear factor kappa-B (RANK) and indirectly by decreasing osteoprotegrin/RANK ligand ratio. Our data show that in vitro treatment of WFA to calvarial osteoblast cells decreased expression of E3 ubiquitin ligase, Smad ubiquitin regulatory factor 2 (Smurf2), preventing degradation of Runt-related transcription factor 2 (RunX2) and relevant Smad proteins, which are phosphorylated by bone morphogenetic protein 2. Increased Smurf2 expression due to exogenous treatment of tumor necrosis factor α (TNFα) to primary osteoblast cells was decreased by WFA treatment. This was corroborated by using small interfering RNA against Smurf2. Further, WFA also blocked nuclear factor kappa-B (NF-kB) signaling as assessed by tumor necrosis factor stimulated nuclear translocation of p65-subunit of NF-kB. Overall data show that in vitro proteasome inhibition by WFA simultaneously promoted osteoblastogenesis by stabilizing RunX2 and suppressed osteoclast differentiation, by inhibiting osteoclastogenesis. Oral administration of WFA to osteopenic ovariectomized mice increased osteoprogenitor cells in the bone marrow and increased expression of osteogenic genes. WFA supplementation improved trabecular micro-architecture of the long bones, increased biomechanical strength parameters of the vertebra and femur, decreased bone turnover markers (osteocalcin and TNFα) and expression of skeletal osteoclastogenic genes. It also increased new bone formation and expression of osteogenic genes in the femur bone as compared with vehicle groups (Sham) and ovariectomy (OVx), Bortezomib (known PI), injectible parathyroid hormone and alendronate (FDA approved drugs). WFA promoted the process of cortical bone regeneration at drill-holes site in the femur mid-diaphysis region and cortical gap was bridged with woven bone within 11 days of both estrogen sufficient and deficient (ovariectomized, Ovx) mice. Together our data suggest that WFA stimulates bone formation by abrogating proteasomal machinery and provides knowledge base for its clinical evaluation as a bone anabolic agent.

104 citations


Journal ArticleDOI
TL;DR: Okadaic acid (OKA) is one of the main polyether toxins produced by marine microalgae which causes diarrhetic shellfish poisoning and it is a selective and potent inhibitor of serine/threonine phosphatases 1 and 2A induces hyperphosphorylation of tau in vitro and in vivo as mentioned in this paper.
Abstract: Okadaic acid (OKA) is one of the main polyether toxins produced by marine microalgae which causes diarrhetic shellfish poisoning. It is a selective and potent inhibitor of serine/threonine phosphatases 1 and 2A induces hyperphosphorylation of tau in vitro and in vivo. The reduced activity of phosphatases like, protein phosphatase 2A (PP2A) has been implicated in the brain of Alzheimer's disease (AD) patients. It is reported that AD is a complex multifactorial neurodegenerative disorder and hyperphosphorylated tau proteins is a major pathological hallmark of AD. The molecular pathogenesis of AD includes an extracellular deposition of beta amyloid (Aβ), accumulation of intracellular neurofibrillary tangles (NFT), GSK3β activation, oxidative stress, altered neurotransmitter and inflammatory cascades. Several lines of evidence suggested that the microinfusion of OKA into the rat brain causes cognitive deficiency, NFTs-like pathological changes and oxidative stress as seen in AD pathology via tau hyperphosphorylation caused by inhibition of protein phosphatases. So, communal data and information inferred that OKA induces neurodegeneration along with tau hyperphosphorylation; GSK3β activation, oxidative stress, neuroinflammation and neurotoxicity which is a characteristic feature of AD pathology. Through this collected evidence, it is suggested that OKA induced neurotoxicity may be a novel tool to study Alzheimer's disease pathology and helpful in development of new therapeutic approach.

102 citations


Journal ArticleDOI
TL;DR: The results suggest that neuroinflammatory markers might be involved in memory impairment via modulating the NMDA receptor in STZ induced memory impaired rats.

101 citations


Journal ArticleDOI
TL;DR: The first half of this review will focus on the role of β‐catenin in cancer initiation, maintenance, progression and relapse whereas the second half will briefly summarize the recent progress in development of agents for the pharmacological modulation ofβ‐ catenin activity in cancer therapeutics.
Abstract: Beta-catenin (β-catenin) is a multifunction protein with a central role in physiological homeostasis. Its abnormal expression leads to various diseases including cancer. In normal physiology, β-catenin either maintains integrity of epithelial tissues or controls transcription of various genes on extracellular instigations. In epithelial tissues, β-catenin functions as a component of the cadherin protein complex and regulates epithelial cell growth and intracellular adhesion. In Wnt signalling, β-catenin is a major transcriptional modulator and plays a crucial role in embryogenesis, stem cell renewal and organ regeneration. Aberrant expression of β-catenin can induce malignant pathways in normal cells and its abnormal activity is also exploited by existing malignant programmes. It acts as an oncogene and modulates transcription of genes to drive cancer initiation, progression, survival and relapse. Abnormal expression and function of β-catenin in cancer makes it a putative drug target. In the past decade, various attempts have been made to identify and characterize various pharmacological inhibitors of β-catenin. Many of these inhibitors are currently being investigated for their anticancer activities in a variety of cancers. The first half of this review will focus on the role of β-catenin in cancer initiation, maintenance, progression and relapse whereas the second half will briefly summarize the recent progress in development of agents for the pharmacological modulation of β-catenin activity in cancer therapeutics.

96 citations


Journal ArticleDOI
TL;DR: The research findings suggest that a cost-effective CNC-AmB immunoadjuvant chemotherapeutic delivery system could be a viable alternative to the current high-cost commercial lipid-based formulations.
Abstract: The accessible treatment options for life-threatening neglected visceral leishmaniasis (VL) disease have problems with efficacy, stability, adverse effects, and cost, making treatment a complex issue. Here we formulated nanometric amphotericin B (AmB)-encapsulated chitosan nanocapsules (CNC-AmB) using a polymer deposition technique mediated by nanoemulsion template fabrication. CNC-AmB exhibited good steric stability in vitro, where the chitosan content was found to be efficient at preventing destabilization in the presence of protein and Ca2+. A toxicity study on the model cell line J774A and erythrocytes revealed that CNC-AmB was less toxic than commercialized AmB formulations such as Fungizone and AmBisome. The results of in vitro (macrophage-amastigote system; 50% inhibitory concentration [IC50], 0.19 ± 0.04 μg AmB/ml) and in vivo (Leishmania donovani-infected hamsters; 86.1% ± 2.08% parasite inhibition) experiments in conjunction with effective internalization by macrophages illustrated the efficacy of CNC-AmB at augmenting antileishmanial properties. Quantitative mRNA analysis by real-time PCR (RT-PCR) showed that the improved effect was synergized with the upregulation of tumor necrosis factor alpha (TNF-α), interleukin-12 (IL-12), and inducible nitric oxide synthase and with the downregulation of transforming growth factor β (TGF-β), IL-10, and IL-4. These research findings suggest that a cost-effective CNC-AmB immunoadjuvant chemotherapeutic delivery system could be a viable alternative to the current high-cost commercial lipid-based formulations.

Journal ArticleDOI
TL;DR: Licochalcone A (I), isolated from the roots of Chinese licorice, is the most promising antimalarial compound reported so far and two similar chalcones, medicagenin (II) and munchiwarin (III), from Crotalaria medicagenia, which exhibitedAntimalarial activity against Plasmodium falciparum .
Abstract: Licochalcone A (I), isolated from the roots of Chinese licorice, is the most promising antimalarial compound reported so far. In continuation of our drug discovery program, we isolated two similar chalcones, medicagenin (II) and munchiwarin (III), from Crotalaria medicagenia, which exhibited antimalarial activity against Plasmodium falciparum. A library of 88 chalcones were synthesized and evaluated for their in vitro antimalarial activity. Among these, 67, 68, 74, 77, and 78 exhibited good in vitro antimalarial activity against P. falciparum strains 3D7 and K1 with low cytotoxicity. These chalcones also showed reduction in parasitemia and increased survival time of Swiss mice infected with Plasmodium yoelii (strain N-67). Pharmacokinetic studies indicated that low oral bioavailability due to poor ADME properties. Molecular docking studies revealed the binding orientation of these inhibitors in active sites of falcipain-2 (FP-2) enzyme. Compounds 67, 68, and 78 showed modest inhibitory activity against th...

Journal ArticleDOI
02 Dec 2013-PLOS ONE
TL;DR: A reactive oxygen species (ROS), H2O2 -responsive circadian pathway in mammals is identified and likely plays fundamental protective roles in various ROS-inducible disorders, diseases, and death.
Abstract: Dysfunction of circadian clocks exacerbates various diseases, in part likely due to impaired stress resistance. It is unclear how circadian clock system responds toward critical stresses, to evoke life-protective adaptation. We identified a reactive oxygen species (ROS), H2O2 -responsive circadian pathway in mammals. Near-lethal doses of ROS-induced critical oxidative stress (cOS) at the branch point of life and death resets circadian clocks, synergistically evoking protective responses for cell survival. The cOS-triggered clock resetting and pro-survival responses are mediated by transcription factor, central clock-regulatory BMAL1 and heat shock stress-responsive (HSR) HSF1. Casein kinase II (CK2) –mediated phosphorylation regulates dimerization and function of BMAL1 and HSF1 to control the cOS-evoked responses. The core cOS-responsive transcriptome includes CK2-regulated crosstalk between the circadian, HSR, NF-kappa-B-mediated anti-apoptotic, and Nrf2-mediated anti-oxidant pathways. This novel circadian-adaptive signaling system likely plays fundamental protective roles in various ROS-inducible disorders, diseases, and death.

Journal ArticleDOI
30 Jan 2013-PLOS ONE
TL;DR: Tissue specific metabolite analysis of benzylisoquinoline alkaloids (BIAs) in response to wounding revealed increased accumulation of narcotine and papaverine and its possible involvement in the wound induced regulation of BIAs pathway.
Abstract: Wounding is required to be made in the walls of the green seed pod of Opium poppy prior exudation of latex. To withstand this kind of trauma plants regulate expression of some metabolites through an induced transcript level. 167 unique wound-inducible ESTs were identified by a repetitive round of cDNA subtraction after 5 hours of wounding in Papaver somniferum seedlings. Further repetitive reverse northern analysis of these ESTs revealed 80 transcripts showing more than two fold induction, validated through semi-quantitative RT-PCR & real time expression analysis. One of the major classified categories among identified ESTs belonged to benzylisoquinoline transcripts. Tissue specific metabolite analysis of benzylisoquinoline alkaloids (BIAs) in response to wounding revealed increased accumulation of narcotine and papaverine. Promoter analysis of seven transcripts of BIAs pathway showed the presence of W-box cis-element with the consensus sequence of TGAC, which is the proposed binding site for WRKY type transcription factors. One of the Wound inducible ‘WRKY’ EST isolated from our subtracted library was made full-length and named as ‘PsWRKY’. Bacterially expressed PsWRKY interacted with the W-box element having consensus sequence TTGACT/C present in the promoter region of BIAs biosynthetic pathway genes. PsWRKY further activated the TYDC promoter in yeast and transiently in tobacco BY2 cells. Preferential expression of PsWRKY in straw and capsule and its interaction with consensus W-box element present in BIAs pathway gene transcripts suggest its possible involvement in the wound induced regulation of BIAs pathway.

Journal ArticleDOI
TL;DR: A simple and efficient one-pot protocol for the synthesis of NH-carbazoles has been described and the generality of the method has been demonstrated by using a series of 2-alkynyl indoles and arylacetylenes.
Abstract: A simple and efficient one-pot protocol for the synthesis of NH-carbazoles has been described. The strategy comprises a one-pot reaction involving the treatment of 2-alkynyl indoles with arylacetyl...

Journal ArticleDOI
TL;DR: Docking analysis of NSAID interactions at the COX-1 active site appears useful to predict their interference with the anti-platelet activity of aspirin and provide a basis for understanding the observed differences among individual non-aspirin NSAIDs.

Journal ArticleDOI
TL;DR: A novel class of coumarin-monastrol hybrid is discovered, as a novel breast cancer agent which selectively induce apoptosis in both primary and metastatic breast cancer cell lines.

Journal ArticleDOI
TL;DR: In-vivo silencing of miR-135a alleviated hyperglycemia, improved glucose tolerance and significantly restored the levels of IRS2 and p-Akt in the gastrocnemius skeletal muscle of db/db mice without any effect on their hepatic levels, suggesting that miR -135a targets IRS2 levels by binding to its 3'UTR and this interaction regulates skeletal muscle insulin signaling.

Journal ArticleDOI
TL;DR: The results infer that NMDA antagonist MK801 and memantine are effective against OKA-induced neurotoxicity, and clearly indicates the involvement of NMDA receptor in OKA (ICV)-induced Tau hyperphosphorylation.

Journal ArticleDOI
TL;DR: From these studies compound 18 proved to be useful, which at low oral dose of 1 (mg/kg)/day body weight increased bone mass density and volume, expression of osteogenic genes, bone formation rate, and mineral apposition rate, improved the trabecular microarchitecture, and decreased bone turn over markers in an ovariectomized rodent model for postmenopausal osteoporosis.
Abstract: The concept of molecular hybridization led us to discover a novel series of coumarin–dihydropyridine hybrids that have potent osteoblastic bone formation in vitro and that prevent ovariectomy-induced bone loss in vivo. In this context, among all the compounds screened for alkaline phosphatase activity, four compounds 10, 14, 18, and 22 showed significant activity at picomolar concentrations. A series of other in vitro data strongly suggested compound 18 as the most promising bone anabolic agent, which was further evaluated for in vivo studies. From these studies compound 18 proved to be useful, which at low oral dose of 1 (mg/kg)/day body weight increased bone mass density and volume, expression of osteogenic genes (RUNX2, BMP-2, and ColI), bone formation rate (BFR), and mineral apposition rate (MAR), improved the trabecular microarchitecture, and decreased bone turn over markers in an ovariectomized rodent model for postmenopausal osteoporosis.

Journal ArticleDOI
TL;DR: Findings for the first time indicate white matter damage by MM, which may have significance in neurodevelopmental-pediatrics, neurotoxicology and retinal-cell biology.

Journal ArticleDOI
TL;DR: In mice, 480 μg and 720 μg CFM-DPI inhaled twice per week over 4 weeks reduced numbers of CFU in the lung by as much as log10 2.6; 500 μg oral CFM achieved a log10 0.7 reduction.
Abstract: Inhalable clofazimine-containing dry powder microparticles (CFM-DPI) and native clofazimine (CFM) were evaluated for activity against Mycobacterium tuberculosis in human monocyte-derived macrophage cultures and in mice infected with a low-dose aerosol. Both formulations resulted in 99% killing at 2.5 μg/ml in vitro. In mice, 480 μg and 720 μg CFM-DPI inhaled twice per week over 4 weeks reduced numbers of CFU in the lung by as much as log(10) 2.6; 500 μg oral CFM achieved a log(10) 0.7 reduction.

Journal ArticleDOI
TL;DR: An analogous library of 2-substituted quinoline compounds was synthesized with the aim to identify a potential drug candidate to treat visceral leishmaniasis and the efficacy was well correlated with the PK data observed, indicating that the compound is well distributed.

Journal ArticleDOI
TL;DR: Oral administration of curcumin for 13 days significantly improved memory function in both MWM and PAT along with brain energy metabolism, CBF and cholinergic function and inhibited astrocyte activation as evidenced by decreased GFAP expression, confirming previous studies.

Journal ArticleDOI
TL;DR: These studies provide evidences that MTX-FA-GGNP holds promise to address colorectal cancer over-expressing folate receptors, and enjoys dual advantage of having propensity to release the drug in the colon and in the conditions of coloreCTal carcinoma.
Abstract: It was envisaged to develop surface modified Guar Gum Nanoparticles (GGNP) with Folic acid (FA) charged with methotrexate (MTX) to target the colon specifically. The MTX loaded FA functionalized GGNP (MTX-FA-GGNP) have been prepared by emulsion crosslinking method. These surface modified nanoparticles were compared with unmodified MTX loaded GGNP (MTX-GGNP). The developed formulations were evaluated for size and size distribution, zeta potential, Differential Scanning Calorimetry (DSC), release profile and uptake studies. The nanoparticles have been found to have average size of 325 nm in diameter having polydispersity index (PDI) 0.177 indicating mono-disperse particles. The zeta potential of the particles was found to be -36.9 mV. The percent growth inhibition of Caco 2 cells with MTX-FA-GGNP was found to be better than MTX-GGNP indicating folate receptor mediated uptake. The MTX-GGNP protects the release of MTX in upper gastrointestinal tract while maximum release of MTX occurred in simulated colonic fluids of pH 6.8. The in vivo uptake studies revealed preferential uptake of nanoparticles formulation in the colon. These studies provide evidences that MTX-FA-GGNP holds promise to address colorectal cancer over-expressing folate receptors. This prototype formulation enjoys dual advantage of having propensity to release the drug in the colon and in the conditions of colorectal carcinoma; it could be better localized and targeted with improved therapy due to over-expression of folate receptors.

Journal ArticleDOI
TL;DR: EGCG inhibits cellular proliferation via inhibiting ERK activation and inducing apoptosis via ROS generation and p38 activation in endometrial carcinoma cells, which suggest that EGCG reduces the glutathione levels, which might be responsible for enhanced ROS generation causing oxidative stress inendometrial cancer cells.
Abstract: (−)-Epigallocatechin-3-gallate (EGCG), the major polyphenol in green tea, has been shown to inhibit carcinogenesis of various tumor types. The aim of this study was to elucidate the antiproliferative potential of EGCG and its mechanism in human endometrial cancer cells (Ishikawa cells) and primary endometrial adenocarcinoma cells. The antiproliferative effect of EGCG was evaluated by cell viability assay. Apoptosis was measured by annexin/propidium iodide staining. Reactive oxygen species (ROS) generation was measured by using 2',7'-dichlorofluorescin diacetate dye. Expression of mitogen-activated protein kinases, proliferation and apoptotic markers were measured by immunoblot analysis. EGCG was found to inhibit proliferation in Ishikawa as well as in primary endometrial adenocarcinoma cells and effectively down-regulated the expression of proliferation markers, i.e., estrogen receptor α, progesterone receptor, proliferating cell nuclear antigen and cyclin D1. EGCG also decreased the activation of ERK and downstream transcription factors fos and jun. EGCG caused apoptotic cell death accompanied by up-regulation of proapoptotic Bax and down-regulation of antiapoptotic protein Bcl2. EGCG induced the cleavage of caspase-3 and poly(ADP-ribose) polymerase, the hallmark of apoptosis. EGCG significantly induced the ROS generation as well as p38 activation in Ishikawa cells, which appeared to be a critical mediator in EGCG-induced apoptosis. The apoptotic effect of EGCG and the p38 activation were blocked by pretreatment of cells with the ROS scavenger N -acetylcysteine. EGCG reduced the glutathione levels, which might be responsible for enhanced ROS generation causing oxidative stress in endometrial cancer cells. Taken together, these results suggest that EGCG inhibits cellular proliferation via inhibiting ERK activation and inducing apoptosis via ROS generation and p38 activation in endometrial carcinoma cells.

Journal ArticleDOI
TL;DR: Chebulinic acid significantly inhibited H(+) K(+)-ATPase activity in vitro with IC50 of 65.01 μg/ml as compared to the IC50 value of omeprazole confirming its anti-secretory activity.

Journal ArticleDOI
TL;DR: A series of novel tetrazole derivatives of 4-aminoquinoline were synthesized and screened for their antimalarial activities against both chloroquine-senstive (3D7) and chloroquin-resistant (K1) strains of Plasmodium falciparum as well as for cytotoxicity against VERO cell lines.

Journal ArticleDOI
TL;DR: Among them the thiazinan-4-one derivative 4a showed maximal (45%) improvement in oral glucose tolerance test in db/db mice at 30 mg/kg oral dose.

Journal ArticleDOI
TL;DR: The first ZnO-NP catalyzed Ugi type three-component (AB2C) reaction has been developed for the synthesis of 2-arylamino-2-phenylacetimidamide from an aldehyde, amine and isocyanide in aqueous media and it is high yielding and has good atom economy as well as atom efficiency.