scispace - formally typeset
Search or ask a question
Institution

Colorado State University

EducationFort Collins, Colorado, United States
About: Colorado State University is a education organization based out in Fort Collins, Colorado, United States. It is known for research contribution in the topics: Population & Laser. The organization has 31430 authors who have published 69040 publications receiving 2724463 citations. The organization is also known as: CSU & Colorado Agricultural College.
Topics: Population, Laser, Radar, Poison control, Soil water


Papers
More filters
Journal ArticleDOI
01 Aug 1990
TL;DR: An overview of several different experiments applying genetic algorithms to neural network problems including optimizing the weighted connections in feed-forward neural networks using both binary and real-valued representations and using a genetic algorithm to discover novel architectures for neural networks that learn using error propagation are presented.
Abstract: Genetic algorithms are a robust adaptive optimization method based on biological principles. A population of strings representing possible problem solutions is maintained. Search proceeds by recombining strings in the population. The theoretical foundations of genetic algorithms are based on the notion that selective reproduction and recombination of binary strings changes the sampling rate of hyperplanes in the search space so as to reflect the average fitness of strings that reside in any particular hyperplane. Thus, genetic algorithms need not search along the contours of the function being optimized and tend not to become trapped in local minima. This paper is an overview of several different experiments applying genetic algorithms to neural network problems. These problems include 1. (1) optimizing the weighted connections in feed-forward neural networks using both binary and real-valued representations, and 2. (2) using a genetic algorithm to discover novel architectures in the form of connectivity patterns for neural networks that learn using error propagation. Future applications in neural network optimization in which genetic algorithm can perhaps play a significant role are also presented.

754 citations

Journal ArticleDOI
TL;DR: This review focuses on tree and forest responses at boreal and temperate latitudes, ranging from the cellular to the ecosystem level, and management is critical for a positive response of forest growth to a warmer climate.
Abstract: Although trees have responded to global warming in the past - to temperatures higher than they are now - the rate of change predicted in the 21st century is likely to be unprecedented. Greenhouse gas emissions could cause a 3-6°C increase in mean land surface temperature at high and temperate latitudes. Despite this, few experiments have isolated the effects of temperature for this scenario on trees and forests. This review focuses on tree and forest responses at boreal and temperate latitudes, ranging from the cellular to the ecosystem level. Adaptation to varying temperatures revolves around the trade-off between utilizing the full growing season and minimizing frost damage through proper timing of hardening in autumn and dehardening in spring. But the evolutionary change in these traits must be sufficiently rapid to compensate for the temperature changes. Many species have a positive response to increased temperature - but how close are we to the optima? Management is critical for a positive response of forest growth to a warmer climate, and selection of the best species for the new conditions will be of vital importance. Contents Summary 369 I. Introduction 370 II. Photosynthesis and respiration 370 III. Soil organic matter decomposition and mineralization 373 IV. Phenology and frost hardiness 376 V. Whole tree experimental responses to warming 380 VI. Changes in species distribution at warmer temperatures 381 VII. Adaptation and evolution 383 VIII. Ecosystem level responses to warming 387 Acknowledgements 390 References 390 Appendix I. Temperature response functions 399.

754 citations

Journal ArticleDOI
TL;DR: In this article, the authors established the constructs of calling and vocation within counseling psychology, with an eye toward stimulating research and providing useful practice applications, and explained how the constructs apply to the domain of human work, review empirical and theoretical work related to calling, and differentiate the terms from each other and related constructs.
Abstract: The purpose of this article is to initiate an effort to establish the constructs calling and vocation within counseling psychology First, updated definitions of calling and vocation, developed with an eye toward stimulating research and providing useful practice applications, are proposed Next, the authors explain how the constructs apply to the domain of human work, review empirical and theoretical work related to calling and vocation and their role in human functioning, and differentiate the terms from each other and related constructs Finally, directions for basic and applied research on calling and vocation are suggested, and implications for career counseling practice are outlined

754 citations

Journal ArticleDOI
TL;DR: Evidence for rhythmic entrainment of gait patterns was shown by the ability of the RAS group to reproduce the speed of the last training tape within a 2% margin of error without RAS.
Abstract: Rhythmic auditory stimulation (RAS) was used as a pacemaker during a 3-week home-based gaittraining program for Parkinson's disease (PD) patients (n = 15). Electromyogram (EMG) patterns and stride parameters were assessed before and after the test without RAS to evaluate changes in gait patterns. Data were compared with those of two control groups (n = 11), who either did not participate in any gait training or who participated in an internally self-paced training program. RAS consisted of audiotapes with metronome-pulse patterns embedded into the on/off beat structure of rhythmically accentuated instrumental music. Patients who trained with RAS significantly (p < 0.05) improved their gait velocity by 25%, stride length by 12%, and step cadence by 10% more than self-paced subjects who improved their velocity decreased by 7% and no-training subjects whose velocity decreased by 7%. In the RAS-group, timing of EMG patterns changed significantly (p < 0.05) in the anterior tibialis and vastus lateralis muscles. Evidence for rhythmic entrainment of gait patterns was shown by the ability of the RAS group to reproduce the speed of the last training tape within a 2% margin of error without RAS.

753 citations

Journal ArticleDOI
TL;DR: It is suggested that future studies should primarily focus on using new observation tools to improve the understanding of tropical plant phenology, on improving process-based phenology modeling, and on the scaling of phenology from species to landscape-level.
Abstract: Plant phenology, the annually recurring sequence of plant developmental stages, is important for plant functioning and ecosystem services and their biophysical and biogeochemical feedbacks to the climate system. Plant phenology depends on temperature, and the current rapid climate change has revived interest in understanding and modeling the responses of plant phenology to the warming trend and the consequences thereof for ecosystems. Here, we review recent progresses in plant phenology and its interactions with climate change. Focusing on the start (leaf unfolding) and end (leaf coloring) of plant growing seasons, we show that the recent rapid expansion in ground- and remote sensing- based phenology data acquisition has been highly beneficial and has supported major advances in plant phenology research. Studies using multiple data sources and methods generally agree on the trends of advanced leaf unfolding and delayed leaf coloring due to climate change, yet these trends appear to have decelerated or even reversed in recent years. Our understanding of the mechanisms underlying the plant phenology responses to climate warming is still limited. The interactions between multiple drivers complicate the modeling and prediction of plant phenology changes. Furthermore, changes in plant phenology have important implications for ecosystem carbon cycles and ecosystem feedbacks to climate, yet the quantification of such impacts remains challenging. We suggest that future studies should primarily focus on using new observation tools to improve the understanding of tropical plant phenology, on improving process-based phenology modeling, and on the scaling of phenology from species to landscape-level.

750 citations


Authors

Showing all 31766 results

NameH-indexPapersCitations
Mark P. Mattson200980138033
Stephen J. O'Brien153106293025
Ad Bax13848697112
David Price138168793535
Georgios B. Giannakis137132173517
James Mueller134119487738
Christopher B. Field13340888930
Steven W. Running12635576265
Simon Lin12675469084
Jitender P. Dubey124134477275
Gregory P. Asner12361360547
Steven P. DenBaars118136660343
Peter Molnar11844653480
William R. Jacobs11849048638
C. Patrignani1171754110008
Network Information
Related Institutions (5)
University of Illinois at Urbana–Champaign
225.1K papers, 10.1M citations

94% related

University of California, Davis
180K papers, 8M citations

94% related

Pennsylvania State University
196.8K papers, 8.3M citations

94% related

University of Wisconsin-Madison
237.5K papers, 11.8M citations

93% related

Cornell University
235.5K papers, 12.2M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023159
2022500
20213,596
20203,492
20193,340
20183,136