scispace - formally typeset
Search or ask a question
Institution

Henan University of Technology

EducationZhengzhou, China
About: Henan University of Technology is a education organization based out in Zhengzhou, China. It is known for research contribution in the topics: Catalysis & Chemistry. The organization has 7648 authors who have published 6503 publications receiving 73067 citations. The organization is also known as: Hénán Gōngyè Dàxué.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors investigated changes in functional properties of wheat gluten as affected by cross-linking with microbial transglutaminase (TGase) and found significant improvements in rheological properties, water-holding capacity and texture properties of the TGase-induced gluten gels.

78 citations

Journal ArticleDOI
TL;DR: A novel and efficient silver catalyzed decarboxylative direct C2-alkylation of benzothiazoles with carboxylic acids for the synthesis of 2-alkylic acid in order to solve the problem of high-performance liquid chromatography of Na6(CO3)(SO4)2, Na2SO4.

77 citations

Journal ArticleDOI
TL;DR: This novel, simple, visual and label-free method for telomerase detection by using enzymatic etching of gold nanorods (GNRs) was considerably suitable for point-of-care diagnostics in resource-constrained regions because of the easy readout of results without the use of sophisticated apparatus.
Abstract: Early diagnosis and life-long surveillance are clinically important to improve the long-term survival of cancer patients. Telomerase activity is a valuable biomarker for cancer diagnosis, but its measurement often used complex label procedures. Herein, we designed a novel, simple, visual and label-free method for telomerase detection by using enzymatic etching of gold nanorods (GNRs). First, repeating (TTAGGG)x sequences were extented on telomerase substrate (TS) primer. It formed G-quadruplex under the help of Hemin and K+. Second, the obtained horseradish peroxidase mimicking hemin/G-quadruplex catalyzed the H2O2-mediated etching of GNRs to the short GNRs, even to gold nanoparticles (GNPs), generating a series of distinct color changes due to their plasmon-related optical response. Thus, this enzymatic reaction can be easily coupled to telomerase activity, allowing for the detection of telomerase activity based on vivid colors. This can be differentiated sensitively by naked eyes because human eyes are ...

77 citations

Journal ArticleDOI
01 Sep 2020-Small
TL;DR: Proteomic analysis shows that TiO2 NPs cause more alterations in multiple pathways in the liver and colon of obese mice than non-obese mice, providing important information on the health effects of foodborne inorganic nanoparticles.
Abstract: The recent ban of titanium dioxide (TiO2 ) as a food additive (E171) in France intensified the controversy on safety of foodborne-TiO2 nanoparticles (NPs). This study determines the biological effects of TiO2 NPs and TiO2 (E171) in obese and non-obese mice. Oral consumption (0.1 wt% in diet for 8 weeks) of TiO2 (E171, 112 nm) and TiO2 NPs (33 nm) does not cause severe toxicity in mice, but significantly alters composition of gut microbiota, for example, increased abundance of Firmicutes phylum and decreased abundance of Bacteroidetes phylum and Bifidobacterium and Lactobacillus genera, which are accompanied by decreased cecal levels of short-chain fatty acids. Both TiO2 (E171) and TiO2 NPs increase abundance of pro-inflammatory immune cells and cytokines in the colonic mucosa, indicating an inflammatory state. Importantly, TiO2 NPs cause stronger colonic inflammation than TiO2 (E171), and obese mice are more susceptible to the effects. A microbiota transplant study demonstrates that altered fecal microbiota by TiO2 NPs directly mediate inflammatory responses in the mouse colon. Furthermore, proteomic analysis shows that TiO2 NPs cause more alterations in multiple pathways in the liver and colon of obese mice than non-obese mice. This study provides important information on the health effects of foodborne inorganic nanoparticles.

76 citations

Journal ArticleDOI
TL;DR: In this paper, a boron-doped diamond (BDD) electrode was modified with a nanocomposite prepared from carbon spheres (CSs; with an average diameter of 500nm) that were synthesized from resorcinol and formaldehyde, and then were coated with gold nanoparticles (AuNPs) by chemically growing them of the CSs.
Abstract: We report on a biosensor for organophosphate pesticides (OPs) by exploiting their inhibitory effect on the activity of acetylcholinesterase (AChE). A boron-doped diamond (BDD) electrode was modified with a nanocomposite prepared from carbon spheres (CSs; with an average diameter of 500 nm) that were synthesized from resorcinol and formaldehyde, and then were coated with gold nanoparticles (AuNPs) by chemically growing them of the CSs. Compared to a bare BDD electrode, the electron transfer resistance is lower on this new electrode. Compared to an electrode without Au-NPs, the peak potential is negatively shifted by 42 mV, and the peak current is increased by 55 %. This is ascribed to the larger surface in the AuNP-CS nanocomposite which improves the adsorption of AChE, enhances its activity, and facilitates electrocatalysis. Under optimum conditions, the inhibitory effect of chlorpyrifos is linearly related to the negative log of its concentration in the 10−11 to 10−7 M range, with a detection limit of 1.3 × 10−13 M. For methyl parathion, the inhibition effect is linear in the 10−12 to 10−6 M range, and the detection limit is 4.9 × 10−13 M. The biosensor exhibits good precision and acceptable operational and temporal stability.

76 citations


Authors

Showing all 7708 results

NameH-indexPapersCitations
Xin Li114277871389
Yang Liu82169533657
Qing-Hua Qin525059939
Dong-Qing Wei484187839
Feng Qi4758110687
Jian Jian Li461197577
Hongshun Yang461655539
Shuangqiang Chen41735539
Fei Xu403146102
Dennis R. Salahub391329259
Lingbo Qu372914894
Yuting Wang378011820
Zhiyong Jiang361353559
Baoping Tang31832455
Jinliang Liu301072317
Network Information
Related Institutions (5)
Jiangnan University
29K papers, 450.1K citations

88% related

South China University of Technology
69.4K papers, 1.2M citations

88% related

Southwest University
27.7K papers, 409.4K citations

86% related

Zhengzhou University
50.3K papers, 668.6K citations

85% related

Zhejiang University of Technology
25.2K papers, 336.1K citations

85% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202325
2022128
2021799
2020670
2019574
2018452