scispace - formally typeset
Search or ask a question
Institution

Huawei

CompanyShenzhen, China
About: Huawei is a company organization based out in Shenzhen, China. It is known for research contribution in the topics: Terminal (electronics) & Signal. The organization has 41417 authors who have published 44698 publications receiving 343496 citations. The organization is also known as: Huawei Technologies & Huawei Technologies Co., Ltd..


Papers
More filters
Journal ArticleDOI
TL;DR: The main requirements of wireless interconnected VR are described followed by a selection of key enablers; then research avenues and their underlying grand challenges are presented.
Abstract: Just recently, the concept of augmented and virtual reality (AR/VR) over wireless has taken the entire 5G ecosystem by storm, spurring an unprecedented interest from academia, industry, and others. However, the success of an immersive VR experience hinges on solving a plethora of grand challenges cutting across multiple disciplines. This article underscores the importance of VR technology as a disruptive use case of 5G (and beyond) harnessing the latest development of storage/ memory, fog/edge computing, computer vision, artificial intelligence, and others. In particular, the main requirements of wireless interconnected VR are described followed by a selection of key enablers; then research avenues and their underlying grand challenges are presented. Furthermore, we examine three VR case studies and provide numerical results under various storage, computing, and network configurations. Finally, this article exposes the limitations of current networks and makes the case for more theory, and innovations to spearhead VR for the masses.

488 citations

Journal ArticleDOI
TL;DR: The opportunities and challenges to exploit AI to achieve intelligent 5G networks, and the effectiveness of AI to manage and orchestrate cellular network resources are highlighted, and it is envisioned that AI-empowered 5G cellular networks will make the acclaimed ICT enabler a reality.
Abstract: 5G cellular networks are assumed to be the key enabler and infrastructure provider in the ICT industry, by offering a variety of services with diverse requirements. The standardization of 5G cellular networks is being expedited, which also implies more of the candidate technologies will be adopted. Therefore, it is worthwhile to provide insight into the candidate techniques as a whole and examine the design philosophy behind them. In this article, we try to highlight one of the most fundamental features among the revolutionary techniques in the 5G era, i.e., there emerges initial intelligence in nearly every important aspect of cellular networks, including radio resource management, mobility management, service provisioning management, and so on. However, faced with ever-increasingly complicated configuration issues and blossoming new service requirements, it is still insufficient for 5G cellular networks if it lacks complete AI functionalities. Hence, we further introduce fundamental concepts in AI and discuss the relationship between AI and the candidate techniques in 5G cellular networks. Specifically, we highlight the opportunities and challenges to exploit AI to achieve intelligent 5G networks, and demonstrate the effectiveness of AI to manage and orchestrate cellular network resources. We envision that AI-empowered 5G cellular networks will make the acclaimed ICT enabler a reality.

473 citations

Posted Content
TL;DR: In this paper, the authors identify key challenges for future research and preliminary 5G standardization activities, while providing a comprehensive overview of the current literature, and in particular of the papers appearing in this special issue.
Abstract: What will 5G be? What it will not be is an incremental advance on 4G. The previous four generations of cellular technology have each been a major paradigm shift that has broken backwards compatibility. And indeed, 5G will need to be a paradigm shift that includes very high carrier frequencies with massive bandwidths, extreme base station and device densities and unprecedented numbers of antennas. But unlike the previous four generations, it will also be highly integrative: tying any new 5G air interface and spectrum together with LTE and WiFi to provide universal high-rate coverage and a seamless user experience. To support this, the core network will also have to reach unprecedented levels of flexibility and intelligence, spectrum regulation will need to be rethought and improved, and energy and cost efficiencies will become even more critical considerations. This paper discusses all of these topics, identifying key challenges for future research and preliminary 5G standardization activities, while providing a comprehensive overview of the current literature, and in particular of the papers appearing in this special issue.

468 citations

Journal ArticleDOI
TL;DR: In this paper, the authors presented the first full-system 40 Gb/s TWDM-PON prototype, which is capable of supporting 20 km distance with a 1:512 split ratio.
Abstract: The next-generation passive optical network stage 2 (NG-PON2) effort was initiated by the full service access network (FSAN) in 2011 to investigate on upcoming technologies enabling a bandwidth increase beyond 10 Gb/s in the optical access network. The FSAN meeting in April 2012 selected the time- and wavelength-division multiplexed passive optical network (TWDM-PON) as a primary solution to NG-PON2. In this paper, we summarize the TWDM-PON research in FSAN by reviewing the basics of TWDM-PON and presenting the world's first full-system 40 Gb/s TWDM-PON prototype. After introducing the TWDM-PON architecture, we explore TWDM-PON wavelength plan options to meet the NG-PON2 requirements. TWDM-PON key technologies and their respective level of development are further discussed to investigate its feasibility and availability. The first full-system 40 Gb/s TWDM-PON prototype is demonstrated to provide 40 Gb/s downstream and 10 Gb/s upstream bandwidth. This full prototype system offers 38 dB power budget and supports 20 km distance with a 1:512 split ratio. It coexists with commercially deployed Gigabit PON (G-PON) and 10 Gigabit PON (XG-PON) systems. The operator-vendor joint test results testify that TWDM-PON is achievable by the reuse and integration of commercial devices and components.

467 citations

Journal ArticleDOI
TL;DR: A class of full-fluoride (FF) electrolyte is invented for 5-V RLMB which not only has good compatibility with cathode and a wide stability window but also possesses the capability to make LMA more stable and reversible.
Abstract: Lithium metal has gravimetric capacity ∼10× that of graphite which incentivizes rechargeable Li metal batteries (RLMB) development. A key factor that limits practical use of RLMB is morphological instability of Li metal anode upon electrodeposition, reflected by the uncontrolled area growth of solid–electrolyte interphase that traps cyclable Li, quantified by the Coulombic inefficiency (CI). Here we show that CI decreases approximately exponentially with increasing donatable fluorine concentration of the electrolyte. By using up to 7 m of Li bis(fluorosulfonyl)imide in fluoroethylene carbonate, where both the solvent and the salt donate F, we can significantly suppress anode porosity and improve the Coulombic efficiency to 99.64%. The electrolyte demonstrates excellent compatibility with 5-V LiNi0.5Mn1.5O4 cathode and Al current collector beyond 5 V. As a result, an RLMB full cell with only 1.4× excess lithium as the anode was demonstrated to cycle above 130 times, at industrially significant loading of 1.83 mAh/cm2 and 0.36 C. This is attributed to the formation of a protective LiF nanolayer, which has a wide bandgap, high surface energy, and small Burgers vector, making it ductile at room temperature and less likely to rupture in electrodeposition.

465 citations


Authors

Showing all 41483 results

NameH-indexPapersCitations
Yu Huang136149289209
Xiaoou Tang13255394555
Xiaogang Wang12845273740
Shaobin Wang12687252463
Qiang Yang112111771540
Wei Lu111197361911
Xuemin Shen106122144959
Li Chen105173255996
Lajos Hanzo101204054380
Luca Benini101145347862
Lei Liu98204151163
Tao Wang97272055280
Mohamed-Slim Alouini96178862290
Qi Tian96103041010
Merouane Debbah9665241140
Network Information
Related Institutions (5)
Alcatel-Lucent
53.3K papers, 1.4M citations

90% related

Bell Labs
59.8K papers, 3.1M citations

88% related

Hewlett-Packard
59.8K papers, 1.4M citations

87% related

Microsoft
86.9K papers, 4.1M citations

87% related

Intel
68.8K papers, 1.6M citations

87% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202319
202266
20212,069
20203,277
20194,570
20184,476