scispace - formally typeset
Search or ask a question
Institution

Huawei

CompanyShenzhen, China
About: Huawei is a company organization based out in Shenzhen, China. It is known for research contribution in the topics: Terminal (electronics) & Signal. The organization has 41417 authors who have published 44698 publications receiving 343496 citations. The organization is also known as: Huawei Technologies & Huawei Technologies Co., Ltd..


Papers
More filters
Journal ArticleDOI
TL;DR: The state-of-the-art in traffic engineering for SDN with attention to four cores including flow management, fault tolerance, topology update, and traffic analysis is discussed in detail.
Abstract: SDN is an emerging networking paradigm that separates the network control plane from the data forwarding plane with the promise to dramatically improve network resource utilization, simplify network management, reduce operating costs, and promote innovation and evolution. While traffic engineering techniques have been widely exploited for ATM and IP/MPLS networks for performance optimization in the past, the promising SDN networks require novel traffic engineering solutions that can exploit the global network view, network status, and flow patterns/characteristics in order to achieve better traffic control and management. This article discusses the state-of-the-art in traffic engineering for SDN with attention to four cores including flow management, fault tolerance, topology update, and traffic analysis. Challenging issues for SDN traffic engineering solutions are discussed in detail.

128 citations

Patent
31 Aug 2009
TL;DR: In this paper, a mobile device monitors accelerations using one or more inertial sensors and a user activity is identified based on the accelerations, where the user activity statistic is calculated based on both the first estimation and the second estimation.
Abstract: A mobile device monitors accelerations using one or more inertial sensors. A user activity is identified based on the accelerations. A first estimation is made of a user activity statistic associated with the user activity based on the accelerations. Location information is obtained by one or more location based sensors. A second estimation is made of the user activity statistic based on the location information. The user activity statistic is calculated based on the first estimation and the second estimation.

128 citations

Posted Content
TL;DR: Realistic simulation results using ray tracing on a three dimensional indoor environment demonstrate that the proposed DNN-based configuration method exhibits its merits for all considered cases, and effectively increases the achievable throughput at the target user location.
Abstract: Reconfigurable Intelligent Surfaces (RISs) comprised of tunable unit elements have been recently considered in indoor communication environments for focusing signal reflections to intended user locations. However, the current proofs of concept require complex operations for the RIS configuration, which are mainly realized via wired control connections. In this paper, we present a deep learning method for efficient online wireless configuration of RISs when deployed in indoor communication environments. According to the proposed method, a database of coordinate fingerprints is implemented during an offline training phase. This fingerprinting database is used to train the weights and bias of a properly designed Deep Neural Network (DNN), whose role is to unveil the mapping between the measured coordinate information at a user location and the configuration of the RIS's unit cells that maximizes this user's received signal strength. During the online phase of the presented method, the trained DNN is fed with the measured position information at the target user to output the optimal phase configurations of the RIS for signal power focusing on this intended location. Our realistic simulation results using ray tracing on a three dimensional indoor environment demonstrate that the proposed DNN-based configuration method exhibits its merits for all considered cases, and effectively increases the achievable throughput at the target user location.

128 citations

Journal ArticleDOI
TL;DR: The privacy problems of one of the key enablers of the IoT, namely wireless sensor networks, are looked at and how these problems may evolve with the development of this complex paradigm is analyzed.

128 citations

Proceedings ArticleDOI
15 Jun 2019
TL;DR: Though image-space adversaries can be interpreted as per-pixel albedo change, it is verified that they cannot be well explained along these physically meaningful dimensions, which often have a non-local effect.
Abstract: Generating adversarial examples is an intriguing problem and an important way of understanding the working mechanism of deep neural networks. Most existing approaches generated perturbations in the image space, i.e., each pixel can be modified independently. However, in this paper we pay special attention to the subset of adversarial examples that correspond to meaningful changes in 3D physical properties (like rotation and translation, illumination condition, etc.). These adversaries arguably pose a more serious concern, as they demonstrate the possibility of causing neural network failure by easy perturbations of real-world 3D objects and scenes. In the contexts of object classification and visual question answering, we augment state-of-the-art deep neural networks that receive 2D input images with a rendering module (either differentiable or not) in front, so that a 3D scene (in the physical space) is rendered into a 2D image (in the image space), and then mapped to a prediction (in the output space). The adversarial perturbations can now go beyond the image space, and have clear meanings in the 3D physical world. Though image-space adversaries can be interpreted as per-pixel albedo change, we verify that they cannot be well explained along these physically meaningful dimensions, which often have a non-local effect. But it is still possible to successfully attack beyond the image space on the physical space, though this is more difficult than image-space attacks, reflected in lower success rates and heavier perturbations required.

128 citations


Authors

Showing all 41483 results

NameH-indexPapersCitations
Yu Huang136149289209
Xiaoou Tang13255394555
Xiaogang Wang12845273740
Shaobin Wang12687252463
Qiang Yang112111771540
Wei Lu111197361911
Xuemin Shen106122144959
Li Chen105173255996
Lajos Hanzo101204054380
Luca Benini101145347862
Lei Liu98204151163
Tao Wang97272055280
Mohamed-Slim Alouini96178862290
Qi Tian96103041010
Merouane Debbah9665241140
Network Information
Related Institutions (5)
Alcatel-Lucent
53.3K papers, 1.4M citations

90% related

Bell Labs
59.8K papers, 3.1M citations

88% related

Hewlett-Packard
59.8K papers, 1.4M citations

87% related

Microsoft
86.9K papers, 4.1M citations

87% related

Intel
68.8K papers, 1.6M citations

87% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202319
202266
20212,069
20203,277
20194,570
20184,476