scispace - formally typeset
Search or ask a question
Institution

Huawei

CompanyShenzhen, China
About: Huawei is a company organization based out in Shenzhen, China. It is known for research contribution in the topics: Terminal (electronics) & Signal. The organization has 41417 authors who have published 44698 publications receiving 343496 citations. The organization is also known as: Huawei Technologies & Huawei Technologies Co., Ltd..


Papers
More filters
Proceedings ArticleDOI
05 Jun 2011
TL;DR: The fundamental tradeoff between energy efficiency (EE) and SE in downlink orthogonal frequency division multiple access (OFDMA) networks is addressed and a low-complexity but near-optimal resource allocation algorithm is developed for practical application of the EE-SE tradeoff.
Abstract: Conventional design of wireless networks mainly focuses on system capacity and spectral efficiency (SE). As green radio (GR) becomes an inevitable trend, energy-efficient design in wireless networks is becoming more and more important. In this paper, the fundamental tradeoff relation between energy efficiency (EE) and SE in downlink orthogonal frequency division multiple access (OFDMA) networks is addressed. We obtain a tight upper bound and lower bound on the optimal EE-SE tradeoff relation for general scenarios based on Lagrange dual decomposition, which accurately reflects the optimal EE-SE tradeoff relation. We then focus on a special case that priority and fairness are considered and derive an alternative upper bound, which is even proved to be achievable for flat fading channels. We also develop a low-complexity but near-optimal resource allocation algorithm for practical application of EE-SE tradeoff. Numerical results demonstrate that the optimal EE-SE tradeoff relation is a bell shape curve and can be well approached with our resource allocation algorithm.

329 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present a review of the state-of-the-art methods for strong electronic correlations, starting with the local, eminently important correlations of dynamical mean field theory (DMFT).
Abstract: Strong electronic correlations pose one of the biggest challenges to solid state theory. We review recently developed methods that address this problem by starting with the local, eminently important correlations of dynamical mean field theory (DMFT). On top of this, non-local correlations on all length scales are generated through Feynman diagrams, with a local two-particle vertex instead of the bare Coulomb interaction as a building block. With these diagrammatic extensions of DMFT long-range charge-, magnetic-, and superconducting fluctuations as well as (quantum) criticality can be addressed in strongly correlated electron systems. We provide an overview of the successes and results achieved---hitherto mainly for model Hamiltonians---and outline future prospects for realistic material calculations.

324 citations

Proceedings ArticleDOI
01 Jun 2019
TL;DR: This work develops Point Attention Transformers (PATs), using a parameter-efficient Group Shuffle Attention (GSA) to replace the costly Multi-Head Attention, and proposes an end-to-end learnable and task-agnostic sampling operation, named Gumbel Subset Sampling (GSS), to select a representative subset of input points.
Abstract: Geometric deep learning is increasingly important thanks to the popularity of 3D sensors. Inspired by the recent advances in NLP domain, the self-attention transformer is introduced to consume the point clouds. We develop Point Attention Transformers (PATs), using a parameter-efficient Group Shuffle Attention (GSA) to replace the costly Multi-Head Attention. We demonstrate its ability to process size-varying inputs, and prove its permutation equivariance. Besides, prior work uses heuristics dependence on the input data (e.g., Furthest Point Sampling) to hierarchically select subsets of input points. Thereby, we for the first time propose an end-to-end learnable and task-agnostic sampling operation, named Gumbel Subset Sampling (GSS), to select a representative subset of input points. Equipped with Gumbel-Softmax, it produces a "soft" continuous subset in training phase, and a "hard" discrete subset in test phase. By selecting representative subsets in a hierarchical fashion, the networks learn a stronger representation of the input sets with lower computation cost. Experiments on classification and segmentation benchmarks show the effectiveness and efficiency of our methods. Furthermore, we propose a novel application, to process event camera stream as point clouds, and achieve a state-of-the-art performance on DVS128 Gesture Dataset.

324 citations

Journal ArticleDOI
TL;DR: In this paper, a novel framework for optimizing the performance of such UAV-based wireless systems in terms of the average number of bits (data service) transmitted to users as well as the UAVs' hover duration (i.e. flight time) is proposed.
Abstract: In this paper, the effective use of flight-time constrained unmanned aerial vehicles (UAVs) as flying base stations that provide wireless service to ground users is investigated. In particular, a novel framework for optimizing the performance of such UAV-based wireless systems in terms of the average number of bits (data service) transmitted to users as well as the UAVs’ hover duration (i.e. flight time) is proposed. In the considered model, UAVs hover over a given geographical area to serve ground users that are distributed within the area based on an arbitrary spatial distribution function. In this case, two practical scenarios are considered. In the first scenario, based on the maximum possible hover times of UAVs, the average data service delivered to the users under a fair resource allocation scheme is maximized by finding the optimal cell partitions associated to the UAVs. Using the powerful mathematical framework of optimal transport theory, this cell partitioning problem is proved to be equivalent to a convex optimization problem. Subsequently, a gradient-based algorithm is proposed for optimally partitioning the geographical area based on the users’ distribution, hover times, and locations of the UAVs. In the second scenario, given the load requirements of ground users, the minimum average hover time that the UAVs need for completely servicing their ground users is derived. To this end, first, an optimal bandwidth allocation scheme for serving the users is proposed. Then, given this optimal bandwidth allocation, optimal cell partitions associated with the UAVs are derived by exploiting the optimal transport theory. Simulation results show that our proposed cell partitioning approach leads to a significantly higher fairness among the users compared with the classical weighted Voronoi diagram. Furthermore, the results demonstrate that the average hover time of the UAVs can be reduced by 64% by adopting the proposed optimal bandwidth allocation scheme as well as the optimal cell partitioning approach. In addition, our results reveal an inherent tradeoff between the hover time of UAVs and bandwidth efficiency while serving the ground users.

321 citations

Proceedings ArticleDOI
19 Apr 2009
TL;DR: This paper explores the fundamental problem of LTE SC-FDMA uplink scheduling by adopting the conventional time-domain proportional fair algorithm to maximize its objective (i.e. proportional fair criteria) in the frequency-domain setting and presents a set of practical algorithms fine tuned to this problem.
Abstract: With the power consumption issue of mobile handset taken into account, single-carrier FDMA (SC-FDMA) has been selected for 3GPP long-term evolution (LTE) uplink multiple access scheme. Like in OFDMA downlink, it enables multiple users to be served simultaneously in uplink as well. However, its single carrier property requires that all the subcarriers allocated to a single user must be contiguous in frequency within each time slot. This contiguous allocation constraint limits the scheduling flexibility, and frequency-domain packet scheduling algorithms in such system need to incorporate this constraint while trying to maximize their own scheduling objectives. In this paper we explore this fundamental problem of LTE SC-FDMA uplink scheduling by adopting the conventional time-domain proportional fair algorithm to maximize its objective (i.e. proportional fair criteria) in the frequency-domain setting. We show the NP-hardness of the frequency-domain scheduling problem under this contiguous allocation constraint and present a set of practical algorithms fine tuned to this problem. We demonstrate that competitive performance can be achieved in terms of system throughput as well as fairness perspective, which is evaluated using 3GPP LTE system model simulations.

318 citations


Authors

Showing all 41483 results

NameH-indexPapersCitations
Yu Huang136149289209
Xiaoou Tang13255394555
Xiaogang Wang12845273740
Shaobin Wang12687252463
Qiang Yang112111771540
Wei Lu111197361911
Xuemin Shen106122144959
Li Chen105173255996
Lajos Hanzo101204054380
Luca Benini101145347862
Lei Liu98204151163
Tao Wang97272055280
Mohamed-Slim Alouini96178862290
Qi Tian96103041010
Merouane Debbah9665241140
Network Information
Related Institutions (5)
Alcatel-Lucent
53.3K papers, 1.4M citations

90% related

Bell Labs
59.8K papers, 3.1M citations

88% related

Hewlett-Packard
59.8K papers, 1.4M citations

87% related

Microsoft
86.9K papers, 4.1M citations

87% related

Intel
68.8K papers, 1.6M citations

87% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202319
202266
20212,069
20203,277
20194,570
20184,476