scispace - formally typeset
Search or ask a question
Institution

Indian Institute of Technology Kharagpur

EducationKharagpur, India
About: Indian Institute of Technology Kharagpur is a education organization based out in Kharagpur, India. It is known for research contribution in the topics: Computer science & Dielectric. The organization has 16887 authors who have published 38658 publications receiving 714526 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The superior piezoelectric energy harvester ability of a non-electrically poled Fe-doped reduced graphene oxide (Fe-RGO)/poly(vinylidene fluoride) nanocomposite film prepared through a simple solution casting technique that favors the nucleation and stabilization of polar γ-phase is reported.
Abstract: In this work, we report the superior piezoelectric energy harvester ability of a non-electrically poled Fe-doped reduced graphene oxide (Fe-RGO)/poly(vinylidene fluoride) (PVDF) nanocomposite film prepared through a simple solution casting technique that favors the nucleation and stabilization of ≈99% relative proportion of polar γ-phase. The piezoelectric energy harvester was made with non-electrically poled Fe-RGO/PVDF nanocomposite film that gives an open circuit output voltage and short circuit current up to 5.1 V and 0.254 μA by repetitive human finger imparting. The improvement of the output performance is influenced by the generation of the electroactive polar γ-phase in the PVDF, due to the electrostatic interactions among the –CH2–/–CF2– dipoles of PVDF and the delocalized π-electrons and remaining oxygen functionalities of Fe-doped RGO via ion-dipole and/or hydrogen bonding interactions. Fourier transform infrared spectroscopy (FT-IR) confirmed the nucleation of the polar γ-phase of PVDF by electrostatic interactions and Raman spectroscopy also supported the molecular interactions between the dipoles of PVDF and the Fe-doped RGO nanosheets. In addition, the nanocomposite shows a higher electrical energy density of ≈0.84 J cm−3 at an electric field of 537 kV cm−1, which indicates that it is appropriate for energy storage capabilities. Moreover, the surface of the prepared nanocomposite film is electrically conducting and shows an electrical conductivity of ≈3.30 × 10−3 S cm−1 at 2 wt% loading of Fe-RGO.

263 citations

Journal ArticleDOI
TL;DR: Rheological properties along with swellability, degradation, sol fraction estimation, equilibrium water content and swelling kinetics were evaluated, and MTT assay showed biocompatibility and absence of deleterious effects of hydrogel on cell viability and functionality.

263 citations

Journal ArticleDOI
TL;DR: In this article, the authors focus on the significant application based advances in neat and tailored nanostructures of noble metal-metal oxide nanohybrids and touched upon chalcogenides also.
Abstract: The skilful synthesis of nanohybrids composed of noble metals (Au, Ag, Pt and Pd, as well as AuAg alloy) and metal oxides (ZnO, TiO2, Cu2O, MnO2, Fe2O3, WO3 and CeO2) has received considerable attention for applications in photocatalysis, solar cells, drug delivery, surface enhanced Raman spectroscopy and many other important areas. The overall architecture of nanocomposites is one of the most important factors dictating the physical properties of nanohybrids. Noble metals can be coupled to metal oxides and metal chalcogenides to yield diverse nanostructures, including noble metal decorated-metal oxide nanoparticles (NPs), nanoarrays, noble metal/metal oxide core/shell, noble metal/metal oxide yolk/shell and Janus noble metal–metal oxide nanostructures. In this review, we focus on the significant application based advances in neat and tailored nanostructures of noble metal–metal oxide nanohybrids and touched upon chalcogenides also. The improvement in performance in representative energy conversion, electrochemical water splitting, photocatalytic hydrogen generation, photocatalytic CO2 reduction, photocatalytic degradation of organic pollutants and dye-sensitized solar cell (DSSCs) applications is discussed. Finally, we conclude with a perspective on the future direction and prospects of these controllable nanohybrid materials.

263 citations

Journal ArticleDOI
TL;DR: In this article, a multi-stage transmission gearbox (with and without defects) has been studied in order to replace the conventional vibration monitoring by MCSA, and it has been observed through FFT analysis that low frequencies of the vibration signatures have sidebands across line frequency of the motor current whereas high frequencies of vibration signature are difficult to be detected.

262 citations

Journal ArticleDOI
TL;DR: There is no unique way to perform risk analysis and risk-based maintenance, and the use of suitable techniques and methodologies, careful investigation during the risk analysis phase, and its detailed and structured results are necessary to make proper risk- based maintenance decisions.

262 citations


Authors

Showing all 17290 results

NameH-indexPapersCitations
Rajdeep Mohan Chatterjee11099051407
Vijay P. Singh106169955831
Arun Majumdar10245952464
Sanjay Gupta9990235039
Biswajeet Pradhan9873532900
Sandeep Kumar94156338652
Jürgen Eckert92136842119
Praveen Kumar88133935718
Tuan Vo-Dinh8669824690
Lawrence Carin8494931928
Anindya Dutta8224833619
Aniruddha B. Pandit8042722552
Krishnendu Chakrabarty7999627583
Ramesh Jain7855637037
Thomas Thundat7862222684
Network Information
Related Institutions (5)
Indian Institute of Science
62.4K papers, 1.2M citations

94% related

Royal Institute of Technology
68.4K papers, 1.9M citations

92% related

Nanyang Technological University
112.8K papers, 3.2M citations

92% related

Council of Scientific and Industrial Research
31.8K papers, 707.7K citations

92% related

National Technical University of Athens
31.2K papers, 723.5K citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023284
2022851
20213,142
20202,907
20192,779
20182,489