scispace - formally typeset
Search or ask a question
Institution

Leibniz University of Hanover

EducationHanover, Niedersachsen, Germany
About: Leibniz University of Hanover is a education organization based out in Hanover, Niedersachsen, Germany. It is known for research contribution in the topics: Finite element method & Computer science. The organization has 14283 authors who have published 29845 publications receiving 682152 citations.


Papers
More filters
Proceedings ArticleDOI
20 Apr 2009
TL;DR: This paper proposes a solution that combines global optimization with local selection techniques to benefit from the advantages of both worlds and significantly outperforms existing solutions in terms of computation time while achieving close-to-optimal results.
Abstract: The run-time binding of web services has been recently put forward in order to support rapid and dynamic web service compositions. With the growing number of alternative web services that provide the same functionality but differ in quality parameters, the service composition becomes a decision problem on which component services should be selected such that user's end-to-end QoS requirements (e.g. availability, response time) and preferences (e.g. price) are satisfied. Although very efficient, local selection strategy fails short in handling global QoS requirements. Solutions based on global optimization, on the other hand, can handle global constraints, but their poor performance renders them inappropriate for applications with dynamic and real-time requirements. In this paper we address this problem and propose a solution that combines global optimization with local selection techniques to benefit from the advantages of both worlds. The proposed solution consists of two steps: first, we use mixed integer programming (MIP) to find the optimal decomposition of global QoS constraints into local constraints. Second, we use distributed local selection to find the best web services that satisfy these local constraints. The results of experimental evaluation indicate that our approach significantly outperforms existing solutions in terms of computation time while achieving close-to-optimal results.

628 citations

Journal ArticleDOI
TL;DR: A review of the main developments in cutting technology since the foundation of CIRP over fifty years ago is given in this paper, where the main technological developments associated with the cutting tool and tool materials, the workpiece material, the machine tool, the process conditions and the manufacturing environment are given detailed consideration.

624 citations

Journal ArticleDOI
TL;DR: The direct measurement of 15 dB squeezed vacuum states of light and their application to calibrate the quantum efficiency of photoelectric detection and a customized InGaAs positive intrinsic negative photodiode optimized for high external quantum efficiency are reported on.
Abstract: Researchers have created quantum states of light whose noise level has been ``squeezed'' to a record low.

614 citations

Journal ArticleDOI
TL;DR: In this paper, the authors used in-situ produced cosmogenic nuclides (e.g. 10Be, 26Al), mostly in quartz from alluvial sediment.

605 citations

Journal ArticleDOI
TL;DR: Microporous membranes with pore apertures below the nanolevel can exhibit size selectivity by serving as a molecular sieve, which is promising for overcoming Robeson s “upperbound” limits in membrane-based gas separation.
Abstract: Microporous membranes with pore apertures below the nanolevel can exhibit size selectivity by serving as a molecular sieve, which is promising for overcoming Robeson s “upperbound” limits in membrane-based gas separation. Zeolites, polymers of intrinsic microporosity (PIMs), metal oxides, and active carbon are the typical materials used for this purpose. Metal–organic frameworks (MOFs) have attracted much research interest in recent years, and are emerging as a new family of molecular sieves. MOFs are novel porous crystalline materials consisting of metal ions or clusters interconnected by a variety of organic linkers. In addition to promising applications in adsorptive gas separation and storage or in catalysis, their unique properties, such as their highly diversified structures, large range in pore sizes, very high surface areas, and specific adsorption affinities, make MOFs excellent candidates for use in the construction of molecular sieve membranes with superior performance. The preparation of MOF membranes for gas separation is rapidly becoming a research focus. A number of attempts have been made to prepare supported-MOF membranes; however, progress is very limited and so far there are only very few reports of continuous MOF films on porous supports being used as separating membranes. Recently, Guo et al. reported a copper-net-supported HKUST-1 (Cu3(BTC)2; BTC= benzene-1,3,5-tricarboxylate) membrane exhibiting a H2/N2 selectivity of 7 [13] (separation factor of H2 over N2 is calculated as the permeate-to-retentate composition ratio of H2, divided by the same ratio for N2 as proposed by IUPAC) ; this is the first MOF membrane to show gasseparation performance beyond Knudsen diffusion behavior. Very recently, Ranjan and Tsapatsis prepared a microporous metal–organic framework [MMOF, Cu(hfipbb)(H2hfipbb)0.5; hfipbb= 4,4’-(hexafluoroisopropylidene)bis(benzoic acid)] membrane by seeded growth on an alumina support. The ideal selectivity for H2/N2, based on single permeation tests, was 23 at 190 8C. This higher selectivity, compared to the report from Guo et al., might be a result of the smaller effective pore size (ca. 0.32 nm of MMOF versus 0.9 nm of HKUTS-1), which results in a relatively low H2 permeance of this MMOF membrane (10 9 molm 2 s Pa 1 at 190 8C). The authors attributed this finding to the blockage of the onedimensional (1D) straight-pore channels in the membrane. Therefore, with regard to H2 separation, small-pore MOFs having three-dimensional (3D) channel structures are considered to be ideal membrane materials. Zeolitic imidazolate frameworks (ZIFs), a subfamily of MOFs, consist of transition metals (Zn, Co) and imidazolate linkers which form 3D tetrahedral frameworks and frequently resemble zeolite topologies. A number of ZIFs exhibit exceptional thermal and chemical stability. Another important feature of ZIFs is their hydrophobic surfaces, which give ZIF membranes certain advantages over zeolite membranes and sol–gel-derived silica membranes in the separation of H2 in the presence of steam. Very recently we reported the first result from permeation measurements on a ZIF-8 membrane. The ZIF-8 membrane showed a H2/CH4 separation factor greater than 10. Whereas the ZIF-8 pores (0.34 nm) are slightly larger than the kinetic diameter of CO2 (0.33 nm), and are very flexible, the H2/CO2 separation on this ZIF-8 membrane showed Knudsen selectivity. In the current work, we therefore chose ZIF-7 as a promising candidate for the development of a H2-selective membrane to satisfy the above requirements. ZIF-7 (Zn(bim)2) is formed by bridging benzimidazolate (bim) anions and zinc cations with soladite (SOD) topology. The pore size of ZIF-7 (the hexagonal window size in the SOD cage) estimated from crystallographic data is about 0.3 nm, which is just in between the size of H2 (0.29 nm) and CO2 (0.33 nm). We could therefore expect a ZIF-7 membrane to achieve a high selectivity of H2 over CO2 and other gases through a molecular sieving effect. In many cases, it was reported that the heterogeneous nucleation density of MOF crystals on ceramic supports is very low, 14] which makes it extremely difficult to prepare supported-MOF membranes by an in situ synthesis route. Chemical modifications of substrate surfaces have been proposed to direct the nucleation and orientation of the deposited MOF layers. Based on our knowledge in the development of zeolite membranes, we adopted a seeded secondary growth method for the ZIF-7 membrane prepara[*] Prof. Dr. Y.-S. Li, F.-Y. Liang, H. Bux, A. Feldhoff, Prof. Dr. J. Caro Institute of Physical Chemistry and Electrochemistry and the Laboratory for Nano and Quantum Engineering (LNQE) in cooperation with the Center for Solid State Research and New Materials, Leibniz Universit t Hannover Callinstrasse 3A, 30167 Hannover (Germany) Fax: (+49)511-762-19121 E-mail: yanshuo.li@pci.uni-hannover.de juergen.caro@pci.uni-hannover.de

596 citations


Authors

Showing all 14621 results

NameH-indexPapersCitations
Hyun-Chul Kim1764076183227
Peter Zoller13473476093
J. R. Smith1341335107641
Chao Zhang127311984711
Benjamin William Allen12480787750
J. F. J. van den Brand12377793070
J. H. Hough11790489697
Hans-Peter Seidel112121351080
Karsten Danzmann11275480032
Bruce D. Hammock111140957401
Benno Willke10950874673
Roman Schnabel10858971938
Jan Harms10844776132
Hartmut Grote10843472781
Ik Siong Heng10742371830
Network Information
Related Institutions (5)
Karlsruhe Institute of Technology
82.1K papers, 2.1M citations

95% related

Technische Universität München
123.4K papers, 4M citations

94% related

ETH Zurich
122.4K papers, 5.1M citations

94% related

RWTH Aachen University
96.2K papers, 2.5M citations

93% related

École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023221
2022520
20212,280
20202,210
20192,105
20181,959