scispace - formally typeset
Search or ask a question
Institution

Leibniz University of Hanover

EducationHanover, Niedersachsen, Germany
About: Leibniz University of Hanover is a education organization based out in Hanover, Niedersachsen, Germany. It is known for research contribution in the topics: Finite element method & Computer science. The organization has 14283 authors who have published 29845 publications receiving 682152 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The 3% WO3-TiO2 nanocomposite is considered to be the optimum photocatalyst which is able to degrade completely (100% conversion) of imazapyr herbicide along 120min with high photonic efficiency ∼8%.

124 citations

Journal ArticleDOI
TL;DR: New approaches for biosensor design, new implementations of PSi as a host matrix for synergistic materials that enable alternate biosensor readout approaches and signal enhancement, new methods to reliably achieve higher detection sensitivity, and new emphases on detection of molecules in complex media, integration with microfluidics for sample handling, and multiplexed detection capabilities have been reported.
Abstract: Since its first demonstration as a promising material for molecular detection two decades ago, porous silicon (PSi) has become a commercially viable optical biosensor platform attracting sustained research interest. Progress in both fundamental understanding and diverse application areas has occurred. In particular, new approaches for biosensor design, new implementations of PSi as a host matrix for synergistic materials that enable alternate biosensor readout approaches and signal enhancement, new methods to reliably achieve higher detection sensitivity, and new emphases on detection of molecules in complex media, integration with microfluidics for sample handling, and multiplexed detection capabilities have been reported. In all cases, the extremely high internal surface area of PSi, the ease in modifying the surface chemistry of PSi, and the straightforward fabrication of PSi films are key advantages for PSi biosensors. This review focuses on advances in PSi optical biosensors achieved over the past three years.

123 citations

Journal ArticleDOI
TL;DR: This paper investigates two different methods targeted at the determination of suitable initial values in terrestrial laser scanners, one based on a symbolic approach, and the other based on an iterative alignment scheme originally proposed in the robotics domain.
Abstract: The use of terrestrial laser scanners is becoming increasingly popular. For the acquisition of larger scenes, it is usually necessary to align all scans to a common reference frame. While there are methods using direct measurement of the orientation, due to simplicity and costs, mostly artificial targets are used. This works reliably, but usually adds a substantial amount of time to the acquisition process. Methods to align scans using the scan data itself have been known for a long time, however, being iterative, they need good initial values. In this paper, we investigate two different methods targeted at the determination of suitable initial values. The first one is based on a symbolic approach, using corresponding features to compute the orientation. The second one is based on an iterative alignment scheme originally proposed in the robotics domain. To assess the performance of both methods, a set of 20 scans has been acquired systematically along a trajectory in a downtown area. Reference orientations were obtained by a standard procedure using artificial targets. We present the results of both methods regarding convergence and accuracy, and compare their performance.

123 citations

Journal ArticleDOI
TL;DR: This work presents original work combining a NURBS-based inverse analysis with both kinematic and constitutive nonlinearities to recover the applied loads and deformations of thin shell structures to show good performance and applicability to computer-aided manufacturing of shell structures.

123 citations

Proceedings ArticleDOI
07 Dec 2015
TL;DR: A bimodal tree for clustering, which successfully exploits the antipodal invariance of the coarse-to-high-res mapping of natural image patches and provides scalability to finer partitions of the underlying coarse patch space, is presented.
Abstract: This paper presents a fast, high-performance method for super resolution with external learning. The first contribution leading to the excellent performance is a bimodal tree for clustering, which successfully exploits the antipodal invariance of the coarse-to-high-res mapping of natural image patches and provides scalability to finer partitions of the underlying coarse patch space. During training an ensemble of such bimodal trees is computed, providing different linearizations of the mapping. The second and main contribution is a fast inference algorithm, which selects the most suitable mapping function within the tree ensemble for each patch by adopting a Local Naive Bayes formulation. The experimental validation shows promising scalability properties that reflect the suitability of the proposed model, which may also be generalized to other tasks. The resulting method is beyond one order of magnitude faster and performs objectively and subjectively better than the current state of the art.

123 citations


Authors

Showing all 14621 results

NameH-indexPapersCitations
Hyun-Chul Kim1764076183227
Peter Zoller13473476093
J. R. Smith1341335107641
Chao Zhang127311984711
Benjamin William Allen12480787750
J. F. J. van den Brand12377793070
J. H. Hough11790489697
Hans-Peter Seidel112121351080
Karsten Danzmann11275480032
Bruce D. Hammock111140957401
Benno Willke10950874673
Roman Schnabel10858971938
Jan Harms10844776132
Hartmut Grote10843472781
Ik Siong Heng10742371830
Network Information
Related Institutions (5)
Karlsruhe Institute of Technology
82.1K papers, 2.1M citations

95% related

Technische Universität München
123.4K papers, 4M citations

94% related

ETH Zurich
122.4K papers, 5.1M citations

94% related

RWTH Aachen University
96.2K papers, 2.5M citations

93% related

École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023221
2022520
20212,280
20202,210
20192,105
20181,959