scispace - formally typeset
Search or ask a question
Institution

Leibniz University of Hanover

EducationHanover, Niedersachsen, Germany
About: Leibniz University of Hanover is a education organization based out in Hanover, Niedersachsen, Germany. It is known for research contribution in the topics: Finite element method & Computer science. The organization has 14283 authors who have published 29845 publications receiving 682152 citations.


Papers
More filters
Journal ArticleDOI
B. P. Abbott1, Richard J. Abbott1, T. D. Abbott2, M. R. Abernathy3  +719 moreInstitutions (86)
Abstract: The second-generation of gravitational-wave detectors are just starting operation, and have already yielding their first detections. Research is now concentrated on how to maximize the scientific potential of gravitational-wave astronomy. To support this effort, we present here design targets for a new generation of detectors, which will be capable of observing compact binary sources with high signal-to-noise ratio throughout the Universe.

796 citations

Journal ArticleDOI
TL;DR: In this article, a new method was designed and used for determining the half-life of the isotope 10 Be, based on accurate 10 Be/ 9 Be measurements of 9 Be-spiked solutions of a 10 Be-rich master solution using multicollector ICP mass spectrometry (MC-ICP-MS) and liquid scintillation counting (LSC) using the CIEMAT/NIST method for determining activity concentrations of the solutions whose 10 Be concentrations were determined by mass spectra.
Abstract: A new method was designed and used for determining the half-life of the isotope 10 Be. The method is based on (1) accurate 10 Be/ 9 Be measurements of 9 Be-spiked solutions of a 10 Be-rich master solution using multicollector ICP mass spectrometry (MC-ICP-MS) and (2) liquid scintillation counting (LSC) using the CIEMAT/NIST method for determining the activity concentrations of the solutions whose 10 Be concentrations were determined by mass spectrometry. Important requirements for the success of this approach (a) was the previous coating of glass ampoules filled for counting experiments with 9 Be, thereby reducing the risk of the adsorptive loss of 10 Be; (b) the removal of Boron from solutions to be measured by MC-ICP-MS by cation chromatography without the introduction of mass fractionation and (c) the accurate determination of the mass bias of 10 Be/ 9 Be measurements by ICP-MS which are always affected by the space-charge effect. The mass bias factor was determined to be 1.1862 ± 0.071 for 10 Be/ 9 Be from careful fitting and error propagation of ratios of measured Li, B, Si, Cr, Fe, Cu, Sr, Nd, Hf, Tl and U standard solutions of known composition under the same measurement conditions. Employing this factor, an absolute 10 Be/ 9 Be ratio of 1.464 ± 0.014 was determined for a first dilution of the 10 Be-rich master solution. This solution is now available as an absolute Be ratio standard in AMS measurements. Finally, a half-life of (1.386 ± 0.016) My (standard uncertainty) was calculated. This value is much more precise than previous estimates and was derived from a fully independent set of experiments. In a parallel, fully independent study using the same master solution, Korschinek et al. [35] have determined a half-life of (1.388 ± 0.018) My. The combined half-life and uncertainty amounts to (1.387 ± 0.012) My. We suggest the use of this value in nuclear studies and in studies that make use of cosmogenic 10 Be in environmental and geologic samples.

790 citations

Journal ArticleDOI
TL;DR: This paper introduces a method to extract 'Shape-DNA', a numerical fingerprint or signature, of any 2d or 3d manifold by taking the eigenvalues (i.e. the spectrum) of its Laplace-Beltrami operator and succeeds in computing eigen values for smoothly bounded objects without discretization errors caused by approximation of the boundary.
Abstract: This paper introduces a method to extract 'Shape-DNA', a numerical fingerprint or signature, of any 2d or 3d manifold (surface or solid) by taking the eigenvalues (i.e. the spectrum) of its Laplace-Beltrami operator. Employing the Laplace-Beltrami spectra (not the spectra of the mesh Laplacian) as fingerprints of surfaces and solids is a novel approach. Since the spectrum is an isometry invariant, it is independent of the object's representation including parametrization and spatial position. Additionally, the eigenvalues can be normalized so that uniform scaling factors for the geometric objects can be obtained easily. Therefore, checking if two objects are isometric needs no prior alignment (registration/localization) of the objects but only a comparison of their spectra. In this paper, we describe the computation of the spectra and their comparison for objects represented by NURBS or other parametrized surfaces (possibly glued to each other), polygonal meshes as well as solid polyhedra. Exploiting the isometry invariance of the Laplace-Beltrami operator we succeed in computing eigenvalues for smoothly bounded objects without discretization errors caused by approximation of the boundary. Furthermore, we present two non-isometric but isospectral solids that cannot be distinguished by the spectra of their bodies and present evidence that the spectra of their boundary shells can tell them apart. Moreover, we show the rapid convergence of the heat trace series and demonstrate that it is computationally feasible to extract geometrical data such as the volume, the boundary length and even the Euler characteristic from the numerically calculated eigenvalues. This fact not only confirms the accuracy of our computed eigenvalues, but also underlines the geometrical importance of the spectrum. With the help of this Shape-DNA, it is possible to support copyright protection, database retrieval and quality assessment of digital data representing surfaces and solids. A patent application based on ideas presented in this paper is pending.

789 citations

Journal ArticleDOI
01 Jun 2003-Heart
TL;DR: Vascular implants consisting of magnesium alloy degradable by biocorrosion seem to be a realistic alternative to permanent implants.
Abstract: Objectives: To develop and test a new concept of the degradation kinetics of newly developed coronary stents consisting of magnesium alloys. Methods: Design of a coronary stent prototype consisting of the non-commercial magnesium based alloy AE21 (containing 2% aluminium and 1% rare earths) with an expected 50% loss of mass within six months. Eleven domestic pigs underwent coronary implantation of 20 stents (overstretch injury). Results: No stent caused major problems during implantation or showed signs of initial breakage in the histological evaluation. There were no thromboembolic events. Quantitative angiography at follow up showed a significant (p < 0.01) 40% loss of perfused lumen diameter between days 10 and 35, corresponding to neointima formation seen on histological analysis, and a 25% re-enlargement (p < 0.05) between days 35 and 56 caused by vascular remodelling (based on intravascular ultrasound) resulting from the loss of mechanical integrity of the stent. Inflammation (p < 0.001) and neointimal plaque area (p < 0.05) depended significantly on injury score. Planimetric degradation correlated with time (r = 0.67, p < 0.01). Conclusion: Vascular implants consisting of magnesium alloy degradable by biocorrosion seem to be a realistic alternative to permanent implants.

767 citations

Journal ArticleDOI
TL;DR: The biological role of amino acid catabolism is discussed, current knowledge on amino acid degradation pathways and their regulation in the context of plant cell physiology is summarized and current knowledge about building blocks for several biosynthesis pathways is summarized.

749 citations


Authors

Showing all 14621 results

NameH-indexPapersCitations
Hyun-Chul Kim1764076183227
Peter Zoller13473476093
J. R. Smith1341335107641
Chao Zhang127311984711
Benjamin William Allen12480787750
J. F. J. van den Brand12377793070
J. H. Hough11790489697
Hans-Peter Seidel112121351080
Karsten Danzmann11275480032
Bruce D. Hammock111140957401
Benno Willke10950874673
Roman Schnabel10858971938
Jan Harms10844776132
Hartmut Grote10843472781
Ik Siong Heng10742371830
Network Information
Related Institutions (5)
Karlsruhe Institute of Technology
82.1K papers, 2.1M citations

95% related

Technische Universität München
123.4K papers, 4M citations

94% related

ETH Zurich
122.4K papers, 5.1M citations

94% related

RWTH Aachen University
96.2K papers, 2.5M citations

93% related

École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023221
2022520
20212,280
20202,210
20192,105
20181,959