scispace - formally typeset
Search or ask a question
Institution

Leibniz University of Hanover

EducationHanover, Niedersachsen, Germany
About: Leibniz University of Hanover is a education organization based out in Hanover, Niedersachsen, Germany. It is known for research contribution in the topics: Finite element method & Computer science. The organization has 14283 authors who have published 29845 publications receiving 682152 citations.


Papers
More filters
Journal ArticleDOI
03 Aug 2009-PLOS ONE
TL;DR: The thermal tolerance of the coffee berry borer, Hypothenemus hampei, the most devastating pest of coffee worldwide, is determined and inferences on the possible effects of climate change using climatic data from Colombia, Kenya, Tanzania, and Ethiopia are made.
Abstract: Coffee is predicted to be severely affected by climate change. We determined the thermal tolerance of the coffee berry borer , Hypothenemus hampei, the most devastating pest of coffee worldwide, and make inferences on the possible effects of climate change using climatic data from Colombia, Kenya, Tanzania, and Ethiopia. For this, the effect of eight temperature regimes (15, 20, 23, 25, 27, 30, 33 and 35°C) on the bionomics of H. hampei was studied. Successful egg to adult development occurred between 20–30°C. Using linear regression and a modified Logan model, the lower and upper thresholds for development were estimated at 14.9 and 32°C, respectively. In Kenya and Colombia, the number of pest generations per year was considerably and positively correlated with the warming tolerance. Analysing 32 years of climatic data from Jimma (Ethiopia) revealed that before 1984 it was too cold for H. hampei to complete even one generation per year, but thereafter, because of rising temperatures in the area, 1–2 generations per year/coffee season could be completed. Calculated data on warming tolerance and thermal safety margins of H. hampei for the three East African locations showed considerably high variability compared to the Colombian site. The model indicates that for every 1°C rise in thermal optimum (Topt.), the maximum intrinsic rate of increase (rmax) will increase by an average of 8.5%. The effects of climate change on the further range of H. hampei distribution and possible adaption strategies are discussed. Abstracts in Spanish and French are provided as supplementary material Abstract S1 and Abstract S2.

193 citations

Journal ArticleDOI
13 Jul 2017-Nature
TL;DR: It is shown that QBA on a macroscopic mechanical oscillator can be evaded if the measurement of motion is conducted in the reference frame of an atomic spin oscillator, and this hybrid quantum system paves the way to entanglement generation and distant quantum communication between mechanical and spin systems and to sensing of force, motion and gravity beyond the standard quantum limit.
Abstract: Quantum mechanics dictates that a continuous measurement of the position of an object imposes a random quantum back-action (QBA) perturbation on its momentum. This randomness translates with time into position uncertainty, thus leading to the well known uncertainty on the measurement of motion. As a consequence of this randomness, and in accordance with the Heisenberg uncertainty principle, the QBA puts a limitation-the so-called standard quantum limit-on the precision of sensing of position, velocity and acceleration. Here we show that QBA on a macroscopic mechanical oscillator can be evaded if the measurement of motion is conducted in the reference frame of an atomic spin oscillator. The collective quantum measurement on this hybrid system of two distant and disparate oscillators is performed with light. The mechanical oscillator is a vibrational 'drum' mode of a millimetre-sized dielectric membrane, and the spin oscillator is an atomic ensemble in a magnetic field. The spin oriented along the field corresponds to an energetically inverted spin population and realizes a negative-effective-mass oscillator, while the opposite orientation corresponds to an oscillator with positive effective mass. The QBA is suppressed by -1.8 decibels in the negative-mass setting and enhanced by 2.4 decibels in the positive-mass case. This hybrid quantum system paves the way to entanglement generation and distant quantum communication between mechanical and spin systems and to sensing of force, motion and gravity beyond the standard quantum limit.

192 citations

Journal ArticleDOI
TL;DR: In this article, a modified sessile drop method was proposed for measuring the initial contact angle of powdered or granular material, which is made by placing a layer of uniform soil particles onto adhesive tape, adding droplets of deionized water, and reading off the contact angle at the three-phase boundary line with a goniometerfitted microscope immediately after placing the drops on the soil sample.
Abstract: Existing methods for determining the soil-water contact angle as a measure of water repellency are either indirect, cumbersome, or time-consuming. Our objective was to develop a method that is simpler than existing procedures and that still yields accurate results. The proposed method represents a modified sessile drop method for measuring the initial contact angle of powdered or granular material. The measurements are made by placing a layer of uniform soil particles onto adhesive tape, adding droplets of deionized water, and reading off the contact angle at the three-phase boundary line with a goniometerfitted microscope immediately after placing the drops on the soil sample. Sieved soil fractions <63 μm, 63 to 100 μm, and 100 to 200 pm were used to ensure particle layer uniformity. The method was tested on 10 samples from different depths of a sandy soil profile. The contact angles measured on these soil fractions were compared with the water drop penetration time (WDPT) test and the capillary-rise method. The contact angles of the fractions <63 μm and 63 to 100 μm compared reasonably well with those measured with the capillary-rise method and their rank order agreed in general with that of the WDPT test. We conclude thai the new method appears to he promising for the simple, rapid, and reproducible determination of the contact angle of sandy soils. The sessile drop method can he used in a wider range of water repellency conditions compared with either the capillary-rise or the WDPT method.

192 citations

Journal ArticleDOI
TL;DR: The present data show that TEGDMA and DPICI may be regarded as the prime causes for cytotoxic reactions evoked by the investigated light-cured glass-ionomer cements or compomers, and leaching of these substances should be minimized or prevented.
Abstract: In previous studies, light-cured glass-ionomer cements have been shown to evoke cytotoxic reactions. It was the purpose of this investigation (a) to determine the nature of the ingredients released into an aqueous medium from 2 light-cured glass-ionomer cements (GICs) and 3 compomers; (b) to evaluate the cytotoxicity of these extracts; and (c) to correlate the extent of the cytotoxic effects with eluted substances. Specimens of 2 light-cured GICs and 3 compomers were prepared and extracted in distilled water or cell culture medium for 24 hrs (surface-liquid ratio 42.4 mm2/mL). The aqueous eluates were analyzed by gas chromatography/mass spectrometry (GC/MS). The relative amounts of the components released from various products were compared by means of an internal caffeine standard [%CF]. For evaluation of cytotoxic effects, permanent 3T3 fibroblasts were incubated with medium extracts for 24 hrs. In addition, the ED50 concentration of the photoinitiator diphenyliodoniumchloride (DPICl) was determined. In all extracts, several water-elutable organic substances were found: (Co)monomers (especially HEMA and ethylene glycol compounds), additives (e.g., camphorquinone and diphenyliodoniumchloride), and decomposition products. The extracts of 3 products inhibited cell growth only moderately, whereas the light-cured GIC Vitrebond and the compomer Dyract Cem revealed severe cytotoxic effects. Vitrebond liberated the initiator DPICl, whereas Dyract Cem segregated a relatively high quantity [2966 %CF] of the comonomer TEGDMA in comparison with the other products. The present data show that TEGDMA and DPICl may be regarded as the prime causes for cytotoxic reactions evoked by the investigated light-cured glass-ionomer cements or compomers. Therefore, leaching of these substances should be minimized or prevented.

191 citations

Journal ArticleDOI
TL;DR: Application of rhythmic auditory cueing in conventional rehabilitation approaches to enhance motor performance and quality of life in the parkinsonian community is suggested.
Abstract: The use of rhythmic auditory cueing to enhance gait performance in parkinsonian patients’ is an emerging area of interest. Different theories and underlying neurophysiological mechanisms have been suggested for ascertaining the enhancement in motor performance. However, a consensus as to its effects based on characteristics of effective stimuli, and training dosage is still not reached. A systematic review and meta-analysis was carried out to analyze the effects of different auditory feedbacks on gait and postural performance in patients affected by Parkinson’s disease. Systematic identification of published literature was performed adhering to PRISMA guidelines, from inception until May 2017, on online databases; Web of science, PEDro, EBSCO, MEDLINE, Cochrane, EMBASE and PROQUEST. Of 4204 records, 50 studies, involving 1892 participants met our inclusion criteria. The analysis revealed an overall positive effect on gait velocity, stride length, and a negative effect on cadence with application of auditory cueing. Neurophysiological mechanisms, training dosage, effects of higher information processing constraints, and use of cueing as an adjunct with medications are thoroughly discussed. This present review bridges the gaps in literature by suggesting application of rhythmic auditory cueing in conventional rehabilitation approaches to enhance motor performance and quality of life in the parkinsonian community.

191 citations


Authors

Showing all 14621 results

NameH-indexPapersCitations
Hyun-Chul Kim1764076183227
Peter Zoller13473476093
J. R. Smith1341335107641
Chao Zhang127311984711
Benjamin William Allen12480787750
J. F. J. van den Brand12377793070
J. H. Hough11790489697
Hans-Peter Seidel112121351080
Karsten Danzmann11275480032
Bruce D. Hammock111140957401
Benno Willke10950874673
Roman Schnabel10858971938
Jan Harms10844776132
Hartmut Grote10843472781
Ik Siong Heng10742371830
Network Information
Related Institutions (5)
Karlsruhe Institute of Technology
82.1K papers, 2.1M citations

95% related

Technische Universität München
123.4K papers, 4M citations

94% related

ETH Zurich
122.4K papers, 5.1M citations

94% related

RWTH Aachen University
96.2K papers, 2.5M citations

93% related

École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023221
2022520
20212,280
20202,210
20192,105
20181,959