scispace - formally typeset
Search or ask a question
Institution

Mines ParisTech

EducationParis, France
About: Mines ParisTech is a education organization based out in Paris, France. It is known for research contribution in the topics: Finite element method & Microstructure. The organization has 6564 authors who have published 11676 publications receiving 359898 citations. The organization is also known as: École nationale supérieure des mines de Paris & École des mines de Paris.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the structural properties of the EFG tensor distribution in disordered solids are discussed without explicitly looking at particular physical mechanisms, and a simple extension of the Gaussian isotropic model is proposed.
Abstract: Hyperfine studies of disordered materials often yield the distribution of the electric field gradient (EFG) or related quadrupole splitting (QS). The question of the structural information that may be extracted from such distributions has been considered for more than fifteen years. Experimentally most studies have been performed using Mossbauer spectroscopy, especially on . However, NMR, NQR, EPR and PAC methods have also received some attention. The EFG distribution for a random distribution of electric charges was for instance first investigated by Czjzek et al [1] and a general functional form was derived for the joint (bivariate) distribution of the principal EFG tensor component and the asymmetry parameter . The importance of the Gauss distribution for such rotationally invariant structural models was thus evidenced. Extensions of that model which are based on degenerate multivariate Gauss distributions for the elements of the EFG tensor were proposed by Czjzek. The latter extensions have been used since that time, more particularly in Mossbauer spectroscopy, under the name `shell models'. The mathematical foundations of all the previous models are presented and critically discussed as they are evidenced by simple calculations in the case of the EFG tensor. The present article only focuses on those aspects of the EFG distribution in disordered solids which can be discussed without explicitly looking at particular physical mechanisms. We present studies of three different model systems. A reference model directly related to the first model of Czjzek, called the Gaussian isotropic model (GIM), is shown to be the limiting case for many different models with a large number of independent contributions to the EFG tensor and not restricted to a point-charge model. The extended validity of the marginal distribution of in the GIM model is discussed. It is also shown that the second model based on degenerate multivariate normal distributions for the EFG components yields questionable results and has been exaggeratedly used in experimental studies. The latter models are further discussed in the light of new results. The problems raised by these extensions are due to the fact that the consequences of the statistical invariance by rotation of the EFG tensor have not been sufficiently taken into account. Further difficulties arise because the structural degrees of freedom of the disordered solid under consideration have been confused with the degrees of freedom of QS distributions. The relations which are derived and discussed are further illustrated by the case of the EFG tensor distribution created at the centre of a sphere by m charges randomly distributed on its surface. The third model, a simple extension of the GIM, considers the case of an EFG tensor which is the sum of a fixed part and of a random part with variable weights. The bivariate distribution is calculated exactly in the most symmetric case and the effect of the random part is investigated as a function of its weight. The various models are more particularly discussed in connection with short-range order in disordered solids. An ambiguity problem which arises in the evaluation of bivariate distributions of centre lineshift (isomer shift) and quadrupole splitting from Mossbauer spectra is finally quantitatively considered.

120 citations

Journal ArticleDOI
TL;DR: In this article, two kinds of waste biomass (Penicillium oxalicum var Armeniaca, Tolypocladium sp) used in fermentation industry were submitted to different treatments and were tested as biosorbents of cadmium, lead and mercury.

120 citations

Journal ArticleDOI
TL;DR: The aim of the paper is to investigate the structure of solutions of microcrystalline cellulose in NaOH/water mixtures and to determine the limit of cellulose solubility and to give a tentative explanation about the origin of the dissolving power of Naoh/water.

120 citations

Journal ArticleDOI
J. Reuchet1, Luc Rémy2
TL;DR: In this paper, a crack growth equation was proposed to calculate the elementary crack advance, which is a summation of a mechanical contribution due to the fatigue process itself which is described by Tomkins' equation and of an oxidation contribution evaluated from metallographic measurements.
Abstract: A study of the interaction between fatigue and oxidation has been carried out in the case of a cast cobalt base superalloy MARM 509 tested in laboratory air at 900 °C. The influence of fatigue cycling on oxidation of this alloy has been studied by quantitative metallography on polished specimens exposed to air in a furnace and on strain-cycled low-cycle fatigue specimens. The oxidation kinetics were determined by thickness measurements for matrix oxidation and by oxidized depth measurements for the preferential oxidation of MC carbides. In both cases the oxidation kinetics were found to be dramatically enhanced by cycling for the matrix oxidation according to a linear relationship with plastic strain amplitude and less dramatically for carbides according to an exponential relationship with the maximum cyclic stress. From these observations a damage equation which describes fatigue damage as a crack growth process has been proposed: the elementary crack advance is a summation of a mechanical contribution due to the fatigue process itself which is described by Tomkins’ equation and of an oxidation contribution which has been evaluated from metallographic measurements. Integration of this crack growth equation gives predicted fatigue lives which are in good agreement with experimental results within a factor of two.

120 citations

Journal ArticleDOI
TL;DR: In this paper, the authors measured the fatigue crack growth rate (FCGR) of Alloy 718 on CT type specimens at 298 and 823 K and found that a substantial increase in FCGR occurred at low stress intensity levels, as the temperature was increased from 298 to 823 k and as the frequency was decreased at 823k.
Abstract: The fatigue crack growth rate (FCGR) of Alloy 718 was measured on CT type specimens at 298 and 823 K. At 823 K, the influence of frequency was studied in the range between 5 – 10-3 Hz and 20 Hz, using a sinusoidal wave form signal. A substantial increase in FCGR occurred, particularly at low stress intensity levels, as the temperature was increased from 298 to 823 K and as the frequency was decreased at 823 K. At elevated temperature, the effect of cyclic stress wave form was equally investigated, using triangular and square wave form signals producing the same frequency of 5.10-2 Hz. The triangular load led to higher FCGR than the square wave form. In addition the hold time of 10 s both at the maximum and the minimum load associated with the square load had no significant effect on the FCGR. Electron microscopy was used to observe the substructures that developed ahead of fatigue cracks. These observations showed that in certain circumstances plastic deformation proceeded by the propagation of planar bands which were identified as twins. At room temperature, twinning was found to be abundant only in the threshold regime. At 823 K, twinning was observed in the domain of higher FCGR, particularly at low frequencies. Fractography was carried out to study the micromechanisms of crack propagation. At 823 K. intergranular cracking occurred as the frequency was decreased. The comparison between the substructures formed in low cycle fatigue and those associated with the plastic zones of propagating cracks is made. The importance of planar deformation and twinning on intergranular cracking and on the acceleration of FCGR when the loading rate is decreased at 823 K, is discussed.

119 citations


Authors

Showing all 6591 results

NameH-indexPapersCitations
Francis Bach11048454944
Olivier Delattre10349039258
Richard M. Murray9771169016
Bruno Latour9636494864
George G. Malliaras9438228533
George S. Wilson8871633034
Zhong-Ping Jiang8159724279
F. Liu8042823869
Kazu Suenaga7532926287
Carlo Adamo7544436092
Edith Heard7519623899
Enrico Zio73112723809
John J. Jonas7037921544
Bernard Asselain6940923648
Eric Guibal6929416397
Network Information
Related Institutions (5)
Delft University of Technology
94.4K papers, 2.7M citations

93% related

Royal Institute of Technology
68.4K papers, 1.9M citations

93% related

Eindhoven University of Technology
52.9K papers, 1.5M citations

92% related

Chalmers University of Technology
53.9K papers, 1.5M citations

91% related

École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202315
202264
2021274
2020260
2019250
2018249