scispace - formally typeset
Search or ask a question
Institution

Mines ParisTech

EducationParis, France
About: Mines ParisTech is a education organization based out in Paris, France. It is known for research contribution in the topics: Finite element method & Microstructure. The organization has 6564 authors who have published 11676 publications receiving 359898 citations. The organization is also known as: École nationale supérieure des mines de Paris & École des mines de Paris.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, it is shown that plastic anisotropy of the matrix surrounding the voids in a ductile material could have an influence on both effective stress-strain relation and damage evolution.
Abstract: The aim of this paper is to incorporate plastic anisotropy into constitutive equations of porous ductile metals. It is shown that plastic anisotropy of the matrix surrounding the voids in a ductile material could have an influence on both effective stress–strain relation and damage evolution. Two theoretical frameworks are envisageable to study the influence of plastic flow anisotropy: continuum thermodynamics and micromechanics. By going through the Rousselier thermodynamical formulation, one can account for the overall plastic anisotropy, in a very simple manner. However, since this model is based on a weak coupling between plasticity and damage dissipative processes, it does not predict any influence of plastic anisotropy on cavity growth, unless a more suitable choice of the thermodynamical force associated with the damage parameter is made. Micromechanically-based models are then proposed. They consist of extending the famous Gurson model for spherical and cylindrical voids to the case of an orthotropic material. We derive an upper bound of the yield surface of a hollow sphere, or a hollow cylinder, made of a perfectly plastic matrix obeying the Hill criterion. The main findings are related to the so-called ‘scalar effect’ and ‘directional effect’. First, the effect of plastic flow anisotropy on the spherical term of the plastic potential is quantified. This allows a classification of sheet materials with regard to the anisotropy factor h ; this is the scalar effect. A second feature of the model is the plasticity-induced damage anisotropy. This results in directionality of fracture properties (‘directional effect’). The latter is mainly due to the principal Hill coefficients whilst the scalar effect is enhanced by ‘shear’ Hill coefficients. Results are compared to some micromechanical calculations using the finite element method.

329 citations

Journal ArticleDOI
TL;DR: In this paper, the axial forces induced by polycrystalline samples of Al, Cu and α-Fe of commercial purity were tested in torsion over the temperature range 20 −400, 500 and 800°C, respectively.

328 citations

Journal ArticleDOI
TL;DR: This work investigates the nonorthogonality of the Fourier basis on an irregularly sampled grid and proposes a technique called “antileakage Fourier transform” to overcome the spectral leakage and demonstrates the robustness and effectiveness of this technique.
Abstract: Seismic data regularization, which spatially transforms irregularly sampled acquired data to regularly sampled data, is a long-standing problem in seismic data processing. Data regularization can be implemented using Fourier theory by using a method that estimates the spatial frequency content on an irregularly sampled grid. The data can then be reconstructed on any desired grid. Difficulties arise from the nonorthogonality of the global Fourier basis functions on an irregular grid, which results in the problem of “spectral leakage”: energy from one Fourier coefficient leaks onto others. We investigate the nonorthogonality of the Fourier basis on an irregularly sampled grid and propose a technique called “antileakage Fourier transform” to overcome the spectral leakage. In the antileakage Fourier transform, we first solve for the most energetic Fourier coefficient, assuming that it causes the most severe leakage. To attenuate all aliases and the leakage of this component onto other Fourier coefficients, the data component corresponding to this most energetic Fourier coefficient is subtracted from the original input on the irregular grid. We then use this new input to solve for the next Fourier coefficient, repeating the procedure until all Fourier coefficients are estimated. This procedure is equivalent to “reorthogonalizing” the global Fourier basis on an irregularly sampled grid. We demonstrate the robustness and effectiveness of this technique with successful applications to both synthetic and real data examples.

326 citations

Journal ArticleDOI
L. Remy1, André Pineau1
TL;DR: In this article, the tensile properties of various alloys of the FeMn-Cr-C system were studied and the effect of temperature on both twinning and f.c.p.

323 citations

Journal ArticleDOI
TL;DR: In this article, the authors present an estimate of the health impacts due to a shift from car to bicycle or walking, by evaluating four effects: the change in exposure to ambient air pollution for the individuals who change their transportation mode, their health benefit, the health benefit for the general population due to reduced pollution and the risk of accidents.

320 citations


Authors

Showing all 6591 results

NameH-indexPapersCitations
Francis Bach11048454944
Olivier Delattre10349039258
Richard M. Murray9771169016
Bruno Latour9636494864
George G. Malliaras9438228533
George S. Wilson8871633034
Zhong-Ping Jiang8159724279
F. Liu8042823869
Kazu Suenaga7532926287
Carlo Adamo7544436092
Edith Heard7519623899
Enrico Zio73112723809
John J. Jonas7037921544
Bernard Asselain6940923648
Eric Guibal6929416397
Network Information
Related Institutions (5)
Delft University of Technology
94.4K papers, 2.7M citations

93% related

Royal Institute of Technology
68.4K papers, 1.9M citations

93% related

Eindhoven University of Technology
52.9K papers, 1.5M citations

92% related

Chalmers University of Technology
53.9K papers, 1.5M citations

91% related

École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202315
202264
2021274
2020260
2019250
2018249